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It is well-established that there are relationships between word meaning and certain letters or phonemes,
a phenomenon known as sound symbolism. Most sound symbolism studies have relied on a small stimu-
lus set chosen to maximize the probability of finding an effect for a particular semantic category.
Attempts to assign weights to sound symbolic cues have been limited by a methodology that has relied
largely on forced contrast judgments, which do not allow systematic assignment of weights on the sound
symbolic cues. We used a novel research approach designed to allow us to assign weights to sound
symbolic cues. Participants made binary yes/no judgments about thousands of randomly-generated
nonwords, deciding if they were good examples for each of 18 different semantic categories. Formal cues
reliably predicted membership in several of those categories. We show that there is a strong inverse rela-
tionship between the average beta weight assigned to a phonological feature, phoneme, or letter, and the
frequency of that cue. Our results also extend claims about the source of sound symbolic effects, by
demonstrating that different poles of the same semantic dimension differ in their predictability from
form cues; that some previously unsuspected dimensions show strong symbolic effects; and that
features, phonemes, and letters may all contribute to sound symbolism.

� 2017 Elsevier Inc. All rights reserved.
Introduction

In his Cratylus dialogue, Plato gives Socrates the following
words:

‘‘Must we not begin [. . .] with letters; first separating the
vowels, and then the consonants and mutes, into classes,
according to the received distinctions of the learned; also
the semivowels, which are neither vowels, nor yet mutes;
and distinguishing into classes the vowels themselves? And
when we have perfected the classification of things, we shall
give them names, and see whether, as in the case of letters,
there are any classes to which they may be all referred;
and hence we shall see their natures, and see, too, whether
they have in them classes as there are in the letters; and
when we have well considered all this, we shall know how
to apply them to what they resemble—whether one letter is
used to denote one thing, or whether there is to be an admix-
ture of several of them; just, as in painting, the painter who
wants to depict anything sometimes uses purple only, or any
other color, and sometimes mixes up several colors.”

[Plato, 360 BCE/1892]

A range of evidence (reviewed below) suggests that the sound
symbolic associations Socrates was discussing, in which certain
phonemes seem better suited as labels for certain meanings, are
real, at least for some semantic categories. This evidence stands
against one aspect of the ‘‘arbitrariness of the sign” (Saussure,
1916/1983), namely that no particular phoneme is more or less
appropriate for any particular meaning. This is not a trivial matter,
as arbitrariness is often taken as one of language’s fundamental
features (e.g., Hockett, 1963). Saussure (1916/1983) argued that
there is no ‘‘reasonable basis” (p. 73) on which to discuss the
appropriateness of a particular signifier for a signified, in contrast
to our ability to discuss, for instance, ‘‘whether monogamy is better
than polygamy” (p. 73). However, a variety of studies have shown
that phonemes seem to have inherent associations with particular
kinds of meanings, which suggests that such a discussion is viable
and raises the possibility that these associations have affected
language evolution (e.g., Berlin, 1994; Blasi, Wichmann,
Hammarstrom, Stadler, & Christiansen, 2016; Johansson & Zlatev,
2013; Tanz, 1971; Ultan, 1978). Most notably, these
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phoneme-meaning associations include the categories sharp/round
and large/small, as we review in the next section. However, there is
still uncertainty as to which particular phonological features, let-
ters, or phonemes are the best predictors of these dimensions,
how they are weighted, how they are related, and why they are
the best, in part due to the methodological limitations of much pre-
vious work.

Several associated questions remain open: Is there any system-
aticity as to which linguistics features can act as sound symbols?
How general are the categories in which sound symbolic effects
can be found? Are the predictors of one pole of the dimensions
the same (with reversed sign) as the predictors of the other pole,
or are the poles separately symbolized? Are all predictors of
semantic dimensions equal in their predictive force? Are the
effects driven by phonological features, phonemes, graphemes, or
some combination? Do biphones or bigrams contribute to the
effects? If so, how strongly? Are all dimensions equivalent in their
reliance on formal characters (phonological features, phonemes, or
letters), or are different semantic dimensions differentially sensi-
tive to these different formal characters? When evidence from fea-
tures, phonemes, and letters are in conflict, is evidence from one
stronger than from the other? Is the answer the same for all
semantic dimensions? In this paper, we begin to address all these
questions, using a large-scale study in which hundreds of partici-
pants classified thousands of nonword strings for their suitability
as exemplars of 18 semantic categories.
Background

One of the best-known early demonstrations of sound symbol-
ism was Köhler’s (1929, 1947) report (building on closely-related
observations made by Usnadze, 1924) that people had very strong
intuitions about whether maluma (in 1947, or baluma in 1929)1 or
takete was a better name for a round or spiky shape. Köhler found
that most of his participants thought thatmalumawas a better name
for round things and takete a better name for spiky things, a result
that has been much replicated (Davis, 1961; Holland &
Wertheimer, 1964; Maurer, Pathman, & Mondloch, 2006; Nielsen &
Rendall, 2011; Ramachandran & Hubbard, 2001; Sidhu & Pexman,
2016).2 Sapir (1929), following up experimentally on an idea in
Jespersen, 1925), undertook a related experiment in which vowels
were manipulated. Sapir limited himself ‘‘to the meaning contrast
‘large’: ‘small’ as offering the most likely chance of arriving at rela-
tively tangible results” (p. 226). Using a large number of participants,
he showed that people preferred an open-front vowel a (/æ/) over a
closed-front vowel i (/ɪ/) in labelling large things. This was later
extended to the front-back dimension, with the finding that individ-
uals preferred front vowels (e.g., /i/) when labelling small shapes,
and back vowels (e.g., /ɔ/) when labelling large shapes (Newman,
1933).

The results of these studies have been frequently replicated.
However, there are five problems with the reliance of the field
on Köhler and Sapir’s paradigm of forced choice experiments with
a small number of contrasting strings pre-selected by the experi-
1 We have confirmed that the change from baluma to maluma occurred between
the 2nd and 4th printings of the first American (1929) edition of Köhler’s book. The 1st
and 2nd printings occurred in the same month: April 1929. The 3rd printing (a copy of
which we have not yet been able to locate) occurred in August 1929 and the 4th in
October 1929. Since it is unusual to allow author edits of the same edition of a book
between printings and we are aware of no comment by Köhler about this apparent
change in his intuitions, we conclude that the early 1929 appearance of the nonword
baluma was most likely a printing error. Thanks to Jan-Olaf Svantesson for making us
aware that the change occurred between printings of the first edition rather than
between editions (as implied in Westbury, 2005).

2 We have omitted Westbury (2005) from this list as repeated failures to replicate
the reported effect have cast that effect into doubt (see Westbury, in press).
menter ‘‘as offering the most likely chance of arriving at relatively
tangible results” (Sapir, 1929).

One problem is that such contrasts are often transparent
manipulations, making it difficult to gather a lot of data per partic-
ipant. Köhler could not reasonably have asked participants to make
the same choice about the strings kittatee and moolmer, then tikki-
kit and malinus, and so on. Participants would have quickly caught
on, and the task results would become uninformative. This is one
reason why we have knowledge of the sound symbolic value of rel-
atively few strings after nearly a hundred years of research into the
phenomenon.

A second problem is that forced choice judgments are ambigu-
ous in their interpretation, since they don’t provide sufficient infor-
mation for an outside observer to discern the basis of any choice.
Concretely, when someone tells us that mil is a better name for a
small thing than mal, we don’t know if that person made the
choice:

1. Because mil seemed like a good name for a small thing (a true
positive) but mal had no interpretation either way
(unclassifiable).

2. Because mal seemed like a good name for a large thing (a true
positive) but mil had no interpretation (unclassifiable).

3. Because mil seemed liked a poor name for a large thing (a true
negative) but mal seemed like a good name (a true positive).

4. Because mal seemed liked a poor name for a small thing (a true
negative) but mil seemed like a good name (a true positive).

5. Because (as is usually assumed) mil and mal were both true
positives in their respective categories.

These five possibilities are not exhaustive, because they do not
take into account any considerations of quantity. Even in the fifth
and normally assumed ‘best case’, we do not know from seeing a
consistent response if mil and mal are good representatives of their
respective categories, or (as we will argue from evidence later in
this paper) mediocre representatives that differ just sufficiently
to enable a consistent forced-choice to be made. As noted by
Tukey (1969), it is very difficult to make theoretical scientific pro-
gress after merely noting a difference if we do not also quantify the
size of that difference.

A third problem is that experiments relying on pre-selected
contrasting strings are really experiments in ‘intuition matching’.
Köhler’s and Sapir’s experiments were not just a demonstration
of sound symbolism; they were simultaneously a demonstration
of the fact that other people share intuitions about sound symbol-
ism. Of course, ultimately, sound symbolism must always rely on
intuition, since the phenomenon is defined in terms of phe-
nomenology. However, intuition matching in experimental design
is scientifically dissatisfying for several reasons. One is that our
conscious intuitions about a phenomenon may provide very little
insight into the true nature of the phenomenon (consider, for
example, the history of armchair theorizing about the nature of
color prior to Newton). To the extent that a phenomenon is more
complex or stranger than we are able to intuit, intuition matching
experiments must leave us wondering how much of the phe-
nomenon remains unexplained. By definition what remains to be
explained lies outside of our intuitions. The second reason it is dis-
satisfying is that intuition matching also limits our ability to
explain why the phenomenon of sound symbolism occurs. If we
do not know why we ourselves feel that k is a good symbol of spiky
things, asking other people if they feel the same way is not likely to
shed any light on the question of why we all share that intuition.
Much of the work on sound symbolism to date has served only
to document that the phenomenon exists.

The last two problems with forced choice experiments are
closely related to this intuition-matching problem. The fourth
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problem is that these experiments necessarily focus our attention
only on the most salient sound symbolism phenomena, i.e., on a
small set of phonemes that have been intuitively recognized to
give clear effects. They therefore offer no information about the
range of sound symbolism effects that may exist, or about what
constraints are in force on those effects. The final problem with
forced choice contrasting strings experiments is a corollary of this:
contrasting strings so strongly delimit the phenomenon of sound
symbolism that it becomes impossible to generalize their results.
We have intuitions only about a small number of the more extreme
sound-meaning relationships and we study those few relationships
again and again.

Evidence for all of these problems can be seen in reviewing the
literature on experimental studies of sound symbolism to date.
Ninety-nine sound symbolism experiments (drawn from 65 pub-
lished papers) are summarized briefly in Table 1. Most sound sym-
bolism experiments have relied upon a small number of stimuli.
Sixty-one (62%) had eight or fewer stimuli or stimuli pairs.
Twenty-seven (27%) followed Köhler in using just a single pair.
Many experiments that used more than eight stimuli pairs never-
theless suffered from the limits of intuition matching by confining
themselves to matching the famous intuitions of Köhler and Sapir.
At least 40 (40%) of the experiments were focused on open/closed
vowels, or closely related manipulations such as front/back vowels
or low/high frequency sounds, like those first studied by Sapir and/
or on studying maluma/takete (or nonwords deliberately chosen to
be very similar, such as uloomu, kipi, and moma), following Köhler.
Theoretical considerations

Hinton, Nichols, and Ohala (1994) suggested that instances of
sound symbolism fall into four main groups: corporeal sound sym-
bolism, imitative sound symbolism, conventional sound symbolism,
and synaesthetic sound symbolism.3

Corporeal sound symbolism refers to sounds such as grunts,
moans, screams, and sighs, that attain their meaning (to slightly
paraphrase Hinton et al., 1994, p. 2) more because they are symp-
toms than because they are symbols.

In imitative sound symbolism (onomatopoeia) words (such as
bowwow, meow, and cock-a-doodle-doo) that are coined explicitly
to mimic non-linguistic sounds in the world. Such sound symbol-
ism is largely conventionalized (though see Rhodes, 1994, for a dis-
cussion of imitative sound symbolism ‘in the wild’) but that
conventionality could play a role in linguistic sound symbolism
by setting up conventions.

In conventional sound symbolism, associations between pho-
nemes and meaning are assumed to be based on a clustering of
particular word features with word meanings that is not attributa-
ble to any particular characteristics of the features, but rather due
to a convention encoded in the lexicon. A well-known example is
the existence of phonesthemes, morphologically-unrelated words
with similar meanings and sounds (e.g., glimmer, gleam, glint, glow,
glare), in which the shared gl has no apparent symbolic or morpho-
logical relationship to the semantic category of brief, intense visual
experience. Baayen, Milin, Filipović-Ðurdević, Hendrix, and Marelli
(2011) proposed a causal mechanism that might allow for the
spontaneous development of such pockets of form-meaning coher-
ence. They note that ‘‘a discriminative learning approach [to lan-
3 Note that Hinton et al. (1994) use the term sound symbolism to refer to
relationships at the word level; thus far we have been using this term to refer to
relationships at the phoneme level (i.e., between particular phonemes and certain
meanings). These two uses are not in conflict; sound symbolic relationships between
phonemes and meanings contribute to sound symbolic relationships at the word
level, when a given word contains phonemes sound symbolically related with its
meaning.
guage development] predicts that even small local consistencies
in the fractionated chaos of local form-meaning correspondences
will be reflected in the weights [for shared meaning between lin-
guistic strings], and that they will codetermine lexical processing,
however minute these contributions may be” (p. 56). They go on
to remind us that Shillcock, Kirby, McDonald, and Brew (2001)
found a reliable correlation between phonological and semantic
distance of word pairs, proof that there are indeed ‘small local con-
sistencies in the fractionated chaos of local form-meaning corre-
spondences’ that could seed the growth of form-meaning
systematicities (see also Blasi et al., 2016; Monaghan, Shillcock,
Christiansen, & Kirby, 2014; Perry, Perlman, & Lupyan, 2015). Con-
ventional sound symbolism may thus be autopoietic (self-
producing, in the sense of being independent of any other causes).
This may be the case because some form-meaning relationships
may arise purely by chance, which (following the assumptions of
Baayen et al., 2011) allows that such systematic relationships are
likely to arise, but has nothing to say about which relationships
they will be. There may be no answer to the question why does
‘gl’ associate with brief intense visual experiences? except to say:
because by chance it came to be that way. Of course, once phones-
themes exist, they may influence future sound symbolism.

A closely-related form of conventional sound symbolism may
arise from the existence of semantic categories which share a small
number of orthographic or phonological features for historical rea-
sons. We consider one such example below, the category of flower
names, which tend to share features due to the historical conven-
tions of scientific taxonomy. We present evidence below suggest-
ing, e.g., that ‘heonia’ is a better name for a flower than
‘cruckwic’. We suspect most English speakers would agree even
if they were not explicitly aware that ‘ia’ is widely used in English
scientific taxonomy because it is used in Latin as a suffix for form-
ing feminine nouns.4 This theory of conventional sound symbolism
is amenable to direct testing within some semantic categories, since
it explicitly predicts that semantic categories should show sound
symbolism effects to the extent that there are measureable phono-
logical or orthographic regularities within words of that category.
However, it is also limited to well-delineated categories: it is hard
to imagine looking for conventional form regularities in the category
of ‘round things’ or ‘large things’ since it would be very difficult or
impossible to exhaustively list all the members of such broad and
open-ended categories.

Hinton et al.’s (1994) final category of sound symbolism is
synesthetic sound symbolism, in which some feature of the relevant
phonemes leads to their association with particular kinds of stim-
uli, leading to a perceived link between the sounds and stimuli
despite their being in separate modalities. As Von Humboldt
(1836) put it, the sounds ‘‘produce for the ear an impression simi-
lar to that of the object upon the soul” (p. 73). This is the sort of
sound symbolic association on which we focus here.

There are many proposals for how synesthetic sound symbolic
associations might come to be. Following Sidhu and Pexman
(2017), the causal mechanisms can be grouped into four broad cat-
egories (see also Spence, 2011, for a grouping of the mechanisms
potentially underlying cross-modal correspondences, which Sidhu
and Pexman note as an influence):

i. Association by a pattern of consistent co-occurrence
between sounds and relevant stimuli in the environment.

ii. Association by shared properties between sounds and a
stimulus.
4 Though we will present evidence below suggesting that there are other reasons
why ‘heonia’ is a better name for a flower.



Table 1
99 Sound symbolism experiments.

Author[s] (Year) Sound symbolic elements Number of linguistic
stimuli

Modality Match Stimuli Measure

Abelin (2015) fl/kl/sp/kn/bl/sk/mj 8 NWs Visual Pictures of objects, NW phonaesthemes Forced choice
fl/kl/sp/kn/bl/sk/mj 8 NWs Visual Pictures of objects, NWs phonaesthemes RT to decide if target word is a

real Swedish word
Ahlner and Zlatev (2010) Voiced/voiceless obstruents

� front/back vowel
16 NW pairs Auditory Round/spiky shapes Forced choice

Argo, Popa, and Smith (2010) Reduplication 2 pairs of brand names Visual/spoken aloud (or silent)/gustatory Icecream Rating scale
Reduplication 3 pairs of brand names Visual/auditory/gustatory Icecream Rating scale
Reduplication 3 pairs of brand names Visual/auditory/gustatory Icecream Rating scale
Reduplication [7 positively valenced

pics.,
7 negatively valenced
pics.]

Visual Pictures Rating scale

Reduplication 2 brand names Visual Hand sanitizer Rating scale
Reduplication 2 brand names Visual Phones Rating scale
Reduplication 2 brand names Visual Restaurant Rating scale

Asano et al. (2015) Kipi/moma 2 NWs Visual and auditory Round/spiky shapes Infant visual preference
Athaide and Klink (2012) Front/back vowel 4 pairs Visual Fictitious brand names Forced choice
Auracher, Albers, Zhai, Gareeva,

and Stavniychuk (2010)
Plosive/nasal 180 poems, 8 emotional

expressions
Visual Emotional expressions & poems Rating scale

Aveyard (2012) Front/back vowel 32 Auditory NWs Forced choice
Baxter, Ilicic, Kulczynski, and

Lowrey (2015)
Front/back vowel 2 brand names Visual Image of toy, brand name (Illy/Ully) inside a

triangle or ellipse logo
Rating scale

Baxter and Lowrey (2011) Front/back vowel 4 word pairs Visual Ice cream brand names Forced choice
Front/back vowel 4 toy names Visual Toys, toy names Forced choice

Bentley and Varon (1933) CVC NWs 10 Auditory Large/small Free association
CVC NWs 10 Auditory 10 categories Forced choice
CVC NWs 5 Auditory 5 categories and their opposites Forced choice
CVC NWs 36 pairs Auditory 3 categories and their opposites Forced choice

Bremner et al. (2013) Bouba/kiki; water; chocolate 2 Visual, gustatory, auditory Round/spiky shapes Forced choice
Brown, Black, and Horowitz

(1955)
Foreign antonym pairs 21 pairs Auditory Foreign words Foreign word to English word

matching
Coulter and Coulter (2010) Front/back vowel &

fricatives/stops
8 Visual Product prices Rating scale

Cuskley (2013) CVCV NWs 105 Auditory Motion of a circle Speed adjustment
Cuskley et al. (2015) CVCV NWs 8 Visual Round/spiky shapes Rating scale

CVCV NWs 8 Auditory Round/spiky shapes Rating scale
Davis (1961) Oloomu/takete 2 Auditory & visual Round/spiky shapes Forced choice
D’Onofrio (2014) Labial/Alveolar/Velar x

Voiced/Voiceless
12 Auditory Round/spiky shapes Forced choice

Front/back vowel 12 Auditory Round/spiky kitchen items Forced choice
Doyle and Bottomley (2011) Front/back vowel 2 Visual Frish/Frosh Rating scale
Favalli, Skov, Spence, and Byrne

(2013)
Overall gestalt 3 pairs of NWs, 11

abstract associations,
4 category names

Gustatory and visual Danish open-faced sandwiches, NWs, abstract
associations, category names

Ranking

Fenko, Lotterman, and Galetzka
(2016)

Ramune/Asahi 8 Visual Visual Rating scales

Flumini, Ranzini, and Borghi
(2014)

k/t vs g/m 24 object, 8 NWs Visual Black & white line figures Forced choice

Fort, Weiß, Martin, and
Peperkamp (2013)

CVCV NWs 28 Auditory Round/spiky shapes Infant visual preference

CVCV NWs 12 Auditory Round/spiky shapes Infant visual preference
CVCV NWs 12 Auditory Round/spiky shapes Infant visual preference

Holland and Wertheimer (1964) Baluma/takete 2 Visual Round/spiky shapes 10 rating scales
Maluma/takete/kelu 3 Visual Round/spiky shapes Rating scale

(continued on next page)
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Table 1 (continued)

Author[s] (Year) Sound symbolic elements Number of linguistic
stimuli

Modality Match Stimuli Measure

Imai, Kita, Nagumo, and Okada
(2008)

[fast/slow, heavy/light] 6 mimetics, 12 videos Auditory for mimetic, visual for video, live
speaker for mimetic in Experiment 2

Characters walking Rating scale

Imai et al. (2015) Kipi/moma 2 NWs, 2 shapes Visual and audio Round/spiky shapes Infant visual preference
Irwin and Newland (1940) NWs 10 Visual Complex shapes Forced choice
Kantartzis, Imai, and Kita (2011) NWs 4 altered Japanese

mimetics,
4 with structure of
English verbs

Visual 8 NWs describing movement Indicate preference

Kawahara and Shinohara Voiced/voiceless obstruents 40 test, 20 filler Auditory NW Rating scale
Klink (2000) i e/o u, f v/g k, p t/b d, f s/v z 124 Visual Product names Forced choice
Klink (2001) NWs 3 brand names * 3

products
Visual Brand names Rating scale

Klink (2003) i/o, i/u, e/o, e/u, f/v, g/k 4 brand name pairs Visual Brand names Forced choice
Vowel/consonant 2 brand names * 2 brand

mark
Visual Brand names & brand marks of beer Rating scale

Klink and Athaide (2012) Front/back vowel 4 Visual Fictitious brand names Rating scale
Klink and Wu (2014) NWs 20 names in five groups Visual Brand names Rating scale

High/low frequency
vowel/consonant

16 names in 4 groups Visual Brand names Rating scale

High/low frequency
vowel/consonant

16 names in 4 groups visual/auditory/gustatory brand names Indicate preference between
pairs for speed and size

Kovic and Plunkett (2009) Mot/ riff, dom/shick 9 training, 140 test Visual and auditory Animal-like shapes Forced choice RT
Kuehnl and Mantau (2013) Front/back vowel 4 pairs Visual Bran name preference Forced choice
LaPolla (1994) English antonym pairs 40 Auditory English antonym pairs Forced choice
Lowrey and Shrum (2007) Front/back vowel 10 word pairs Visual and auditory NW brand names Forced choice
Lupyan and Casasanto (2015) Foove/crelch 2 names, 24 aliens Visual Two visual ‘‘alien” species Forced choice
Maglio, Rabaglia, Feder, Krehm,

and Trope (2014)
Front/back vowel 6 Visual Fictitious city names, aerial view of rural

landscape
Divide landscape into regions

Front/back vowel 2 words Visual Actions Forced choice
Front/back vowel 2 words Visual Situational descriptions Rating scale
Front/back vowel 2 words Visual Situational descriptions Rating scale
Front/back vowel 2 words Visual Situational descriptions Rating scale

Maurer et al. (2006) Front/back vowel � k/b 4 NWs Visual and auditory Forced choice
Miyazaki et al. (2013) Kipi/moma 2 shapes, 2 names Visual and auditory NW names for spiky & round shapes Infant visual preferenece
Monaghan et al. (2012) Plosive vs. non-plosive

consonants
16 NWs, 16 shapes Auditory NWs & shapes Forced choice

Myers-Schulz, Pujara, Wolf, and
Koenigs (2013)

Positive/negative affect of
pictures

Visual test: 35 NW pairs;
Auditory test:
22 NW pairs.

Visual and auditory NW phoneme strings & pictures Forced choice

Ngo and Velasco (2012) Akete-maluma, bouba-kiki 6 Gustatory Exotic fruit juices Rating scales + Color decision
Nielsen and Rendall (2011) Consonant/vowel placement 30 names Visual Round/spiky shapes Forced choice

Consonant/vowel placement 42 word pairs Visual and auditory Round/spiky shapes Forced choice
Nygaard, Cook, and Namy (2009) Antonyms 21 antonym pairs Auditory Japanese antonym pairs Forced choice
O’Boyle, Miller, and Rahmani

(1987)
Uloomu/takete 2 Auditory Shapes NW-shape matching

Ohtake and Haryu (2013) Front/back vowel 2 pairs of brand names Visual and auditory Disks Size judgment
Front/back vowel (mouth
shape)

2 NWs, 2 shapes Oral and visual grey disks, mouth shape Size judgment

Ozturk, Krehm, and Vouloumanos
(2013)

Front/back vowel & k/b 2 NWs, 2 shapes Visual and auditory Curvy/angular Infant visual preferenece

Parault and Schwanenflugel
(2006)

Obsolete English words 40 words Visual Sound-symbolic & non-sound symbolic
obsolete English words

Word knowledge

Parise and Spence (2012) mil/mal 2 Auditory Large/small circles Forced choice
Takete/maluma 2 auditory Round/spiky shapes Forced choice
High/low sine wave 2 sounds Auditory Large/small circles Forced choice
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High/low sine wave 2 sounds Auditory Angled lines Forced choice
High/low square wave 2 sounds Auditory Straight/curvy lines Forced choice

Parise and Pavani (2011) Spectral analysis of vowel
production

1 vocal production Vocal production Regular convex polygons Loudness of utterances

Park and Osera (2008) F1/F2 frequencies 3 brand name pairs Visual Categories of products & artificial brand names Forced choice
Peña, Mehler, and Nespor (2011) i/o 2 Auditory Large/small circles Infant visual preference

e/a 2 auditory Large/small circles Infant visual preference
Reilly et al. (2012) English word characteristics 100 NWs Auditory NWs Forced choice

Syllable length, vowel
duration

20 NWs Auditory NWs Forced choice

Morphological complexity 80 words Visual English nouns Forced choice
Roblee and Washburn (1912) Nonword VC strings �208 [less real English

VC words]
Auditory VC Rating scale

Rogers and Ross (1975) Takete/maluma 2 Auditory Round/spiky shapes Forced choice
Sapir (1928) Front/back vowel 60 Auditory Word & NW pairs Forced choice
Shinohara and Kawahara (2010) Voiced/voiceless vowels 40 Visual Nonword VC strings Rating scale
Shrum and Lowrey (2012) Front/back vowel 6 pairs Visual NW pairs Forced choice
Sidhu and Pexman (2015) Stops/continuants & front/

back vowels
5 round-sounding male
names,
5 round-sounding
female names,
5 sharp-sounding female
names,
5 sharp-sounding male
names,
20 pairs of alien-like
character
silhouettes which are
round or sharp

Visual Proper names & alien shapes Name choice

Stops/continuants & front/
back vowels

10 pairs of round/sharp
male names,
10 pairs of round/sharp
female names

Visual Proper names & adjectives Name choice

Simner, Cuskley, and Kirby (2010) Tastes x concentration [Continuous sound
sliders]

Auditory Sound qualities User-selected sound qualities

Walker et al. (2010) Sliding whistle [Sliding whistle] Visual Ball motion Infant visual preference
[Sliding whistle] Visual Morphing shape Infant visual preference

Westbury (2005) Stop/continuant consonants 60 NWs and 60 words Visual Spiky/curvy Forced choice RT
Yorkston and Menon (2004) Front/back vowel 2 Visual Product adjectives Rating scale
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iii. Association by overlap in the ways in which sounds and
stimuli are neurally coded.

iv. Association by evolution.

In the case of co-occurrence, associations may be due to a par-
ticular linguistic feature (e.g., high pitch) and instances of a partic-
ular meaning co-occurring in the environment. For example, one
might explain the association between closed vowels (which in
general are perceived to have higher pitch; Ohala & Eukel, 1987)
and small sizes with reference to the fact that small entities tend
to emit higher pitches (Fitch, 1997; Ohala, 1983, 1984). Ohala
(1994) theorized that sensitivity to this co-occurrence might have
become innate through evolutionary processes–an example of an
evolved sensitivity to sound symbolism (i.e., mechanism four).

In the case of sound symbolism due to shared properties, the
features of phonemes are assumed to have some property (i.e., per-
ceptual, conceptual, or affective) in common with associated stim-
uli. For instance, Bozzi and Flores D’Arcais (1967) found that
round- and sharp-sounding nonwords shared certain connotations
with the round and sharp shapes with which they are associated.

Finally, some have posited that sound symbolic associations
might arise from the way information is coded in the brain.
Ramachandran and Hubbard (2001) suggested that there may be
a close analogy between synaesthesia and sound symbolism, and
presented some evidence that the former may be due to neural
cross-talk. They speculated that sound-shape symbolism might
be due to interactions between visual representations in the infe-
rior temporal lobe, and sound representations in primary auditory
cortex. Westbury (2005) speculated that they might occur in the
left mid-fusiform gyrus, which is known to be involved in both
form and word processing, or the left lateral posterior temporal
lobe, which has been implicated in synaesthesia involving words
(Paulesu et al., 1995). However, there is no hard evidence to sup-
port any of these speculations. Vainio, Schulman, Tiippana, and
Vainio (2013) proposed a related idea, suggesting that the link
between certain vowels and sizes might arise from links between
articulation and grasp neurons (see also Kovic, Plunkett, and
Westermann, 2010).

Of course, these theories need not be mutually exclusive. Mul-
tiple mechanisms may contribute to a single instance of sound
symbolism; it is also possible that different instances of sound
symbolism are explained by different mechanisms. In addition, a
question that has not been addressed is whether certain kinds of
linguistic elements might be more likely than others to have sound
symbolic associations.

There is clearly much work to be done exploring the mechanism
that underlies sound symbolism. One challenge is that researchers
have often been forced to derive theories based on somewhat
restricted datasets. This is because much of the existing literature
consists of studies focusing on specific subsets of language, and
their associations with a small number of semantic dimensions.
In addition, many theories have been generated to explain a specific
instance of sound symbolism. In the present study, we used a novel
approach that avoids these issues. Instead of only examining par-
ticular phonemes and semantic dimensions, we surveyed all of
English phonology for associations with a variety of semantic
dimensions. This was used to explore a potential over-arching fac-
tor in sound symbolism that has not been previously examined:
the distributional properties of sound symbolism cues.

A necessary goal for developing predictive theories is not just to
identify the phonological features, phonemes, and graphemes that
play a role in sound symbolism without relying on contrastive
judgments which mask their mechanism, but to try to weight those
elements in order to identify the degree to which sound symboliza-
tion for a particular category depends on features, phonemes, or
letters, or some combination. Our motivation for this approach
comes from a recent theory of sound symbolism that was used
to make and test explicit hypotheses. Westbury, Shaoul,
Moroschan, and Ramscar (2016) studied sound symbolism related
to the perceived humor in nonwords. Following earlier theories of
humor, they suggested and showed that this form of sound sym-
bolism was predictable as a function of the statistical properties of
the strings, rather than the explicit content (i.e., the specific letters
and phonemes) of the strings. They were able to predict funniness
ratings and forced choice decisions for nonwords, with good accu-
racy across the entire range of judged funniness. They did so by
computing a simple measure of string probability related to Shan-
non entropy (Shannon, 1948), computed across the probabilities of
the letters in the strings without regard to what letters contributed
to the probabilities in any particular string.

The theory that there are statistical/information theoretic fac-
tors contributing to sound symbolism has been little explored,
but makes good a priori sense. Sound symbolism is essentially a
signal detection problem, in which a person needs to classify
strings into two categories (sound symbolic or not). That classifica-
tion depends on the detection of a (possibly complex) signal that
we know to be rare, since (as we demonstrate below) most non-
words do not have any sound symbolic properties. Strings that
are most clearly perceived as having sound symbolic properties
must carry the most clearly discriminative cues to the presence
of that detected signal. This allows us to make some specific pre-
dictions about the relevant cues. One is that rare sounds or letters
are more likely to make good discriminative cues than common
sounds or letters, precisely because they are rare. Common cues,
in virtue of being common, cannot also be discriminative, since
they will by definition appear in (i.e., not serve a cue to discrimi-
nate between) many strings. For example, consider trying to iden-
tify a car from knowing that it has a ‘1’ in its license plate (a
common cue) versus trying it identify it by knowing its actual
license plate number (an uncommon cue). The common cue is (in
virtue of being common) a weakly discriminating signal, whereas
the uncommon cue is (in this case) a perfectly discriminating sig-
nal, since it picks out exactly one exemplar from the class of cars.
A corollary of this inverse relationship between frequency and dis-
criminatory utility is that phonological features, most of which are
ubiquitous by their very nature, can be expected to be weak cues to
sound symbolism, because they occur too often to be useful as a
discriminatory cue. We can also predict that cues that are unam-
biguous (i.e., have a consistent orthography-phonology mapping)
will better able to serve as cues than ambiguous cues, since
ambiguous cues are by definition poor cues. This has several corol-
laries. One is that it is a second strike against vowels as cues to
sound symbolism (the first strike against them being that all vow-
els are common), especially when those vowels are represented as
letters rather than phonemes, because vowels-as-letters tend to
have more than one pronunciation and are thus more likely to have
ambiguous value as signals. It is also predictable that, pari passu, a
cue with a single interpretation (i.e., a letter that maps onto only
one phoneme) should be a better cue than a similar cue that has
more than one interpretation (i.e., a letter that maps onto more
than one phoneme).

Note that, except insofar as predicting that good cues will have
certain properties (i.e., be rare and unambiguous in proportion to
their utility as cues), none of these predictions is about any specific
letter or phoneme. However, the predictions do suggest that it is
likely that only a small set of cues (rare and unambiguous letters
or rare phonemes) will be suitable as strong cues to sound symbol-
ism. This is turn limits the number of sound symbolic categories
that are possible in a language. For example, a cue cannot be a sig-
nal of both large and small size, since for a cue to be both a signal
and a non-signal is useless. We can therefore expect that the small
number of cues that can serve should be distributed with little
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overlap between different sound symbolic categories, and that
overlap should only occur when the categories are not contradic-
tory (i.e., perhaps between the categories of small and feminine,
as hypothesized by Jespersen (1925), or between the categories
of large and round, since largeness in animals and people is often
accompanied by roundness for biological reasons).

These are all testable predictions, but in order to test them we
need to be able to assignweights to sound symbolism cues in differ-
ent semantic categories. To this end, in the present study, we made
several design choices that were different than those used in much
of the existing literature on sound symbolism. In contrast to many
of theprevious studies,wedidnot start bydefining our stimuli using
either our own or anyone else’s intuitions about sound symbolism.
Instead we constructed a large number of nonword strings ran-
domly, using almost all possible English phonemes. By building
regressionmodels over the cues contained in each string,we are able
to assign weights to the 27 features, 41 phonemes, and 26 letters
that might signal a string’s membership or non-membership in a
given category. We asked participants to make judgments about
whether nonwords were good names for members of 18 different
categories, described in more detail in the methods section below.
In addition to testing the predictions we derived from the signal
detection conception of sound symbolism, we used this large-scale
data set to explore thevariousquestions related to sound symbolism
that were mentioned at the outset.

Method

Participants

Participants were 214 students (51 [23.7%] males; 210 [98.6%]
self-reported right-handers). All claimed to be native English
speakers, defined as having learned to speak English before the
age of 5. They had an average [SD] age of 19.9 [2.84] years and
an average [SD] of 13.9 [3.8] years of education. They participated
in return for partial course credit at either the University of Calgary
[71 participants] or the University of Alberta [143 participants].
Forty-four participants at the University of Alberta participated
in this experiment as well as in two other unrelated very simple
experiments, with this experiment always given last. The remain-
der participated only in this experiment.

Stimuli

We selected 21,220 English words that were not morphologi-
cally inflected (though not necessarily monomorphemic) and that
were marked, using ASCII characters and capitalization, for syllab-
ification, stress, and word onset. For example, this list included the
entries #AL-go-RITHM#, #KI-OSK#, #a-BODE# and #ZOOM#.5 We
used the software program LINGUA (Westbury, Hollis, & Shaoul,
2007) to create 629,767 nonwords from this list of words, using a
Markov chaining process that chained on three characters, eliminat-
ing real words in its English dictionary. This process guarantees that
any three contiguous characters in a nonword also appeared in a
word and samples the trigrams proportionally to their probability
of occurrence in real words. This Markov chain process created non-
words that were syllabified, marked for one level of stress, and that
were guaranteed to have real word beginnings. Word endings are
not guaranteed by Markov chaining, since the algorithm merely
selects a statistically-weighted allowable continuation for any three
characters.
5 The original representation additionally also marked primary stress in words with
more than one stressed syllable, but since the Markov chain process has no memory
(i.e. cannot know if it has already marked the primary stress in a generated string), we
did not use this information.
This method produces nonword strings that are highly plausible
as English words and that have highly plausible syllable bound-
aries. For example, the output list generated by LINGUA contained
nonwords such as #DOL-e-FOR, #CAL-clar#, #FIR-ric#, and #in-
TU-za#. These strings illustrate the necessity of generating syllable
boundaries within multi-syllabic nonwords, and of presenting
auditory strings in experiments focusing on the form effects of
nonwords. The orthographic strings dolefor and intuza have
ambiguous pronunciations without syllabification information,
like many English words. For example, the English word judaica
might plausibly be read with three syllables as /dʒuː-deɪ-kə/
[JOO-DAY-ka] if one did not know it has four syllables. From their
orthographic representation alone dolefor and intuza might plausi-
bly be pronounced /dəʊl-fɒr/ [DOLE-FOR] (if the syllabification is
interpreted as #DOLE-FOR#) or as /ɪn-tʌz-ə/ [in-TUZZ-a] (if syllab-
ified as #in-TUZ-a#).

From the large set of generated nonwords we hand-selected
12,556 nonwords that ranged from three to eight letters in length
and that were deemed to have an unambiguous pronunciation,
given their marked syllabification and stress pattern, and to have
plausible word endings. We then converted these nonwords to
their phonological representation using custom-written rule-
based software that converts syllabified orthographic strings such
as ours into a written English phonological code (Derwing,
Priestley, & Westbury, in preparation; for methodological details
from closely-related work see Derwing & Priestly, 1980; Derwing,
Priestly, & Rochet, 1987).

We used Apple’s text-to-speech software to convert each of
these phonological representations into an .AIFF sound file (see
Table 2 for an overview of Apple’s phonological system and its rela-
tionship to IPA). Although usually correct, these representations
were taken as starting points, not ending points: at least one
author (most often two) listened to each sound file to make sure
that the file was not erroneous, distorted, or otherwise problem-
atic. Strings with problematic files were fixed by hand, being either
phonologically improved and regenerated, or discarded, until we
had 8000 nonword strings with sound files that were deemed by
at least one author to be correctly and clearly enunciated. These
files will be made available at: http://www.psych.ualberta.ca/
~westburylab/publications.html.

After all data had been collated, we noticed that we had
included no nonwords containing a voiced th (/ð/). This phoneme
occurs in only a few words in English: mostly in high frequency
words that are irregular because of this rare voicing (e.g., that, than,
the, they) but also systematically in words ending in -ther (e.g.,
feather, mother, gather, leather), systematically in words that end
with -the and their derivations (e.g., breathe/breather, bathe/bather,
seethe/seething), and uniquely in the English word rhythm. Four of
the 8000 nonwords (cothe, flathe, snathe, and cythm) fit a pattern
for voiced th /ð/ but had been transcribed and recorded with an
unvoiced th /h/. Together these nonwords had been used 22 times
in the experiment, constituting 0.05% of all stimulus presentations
in the experiment. Because they met a pattern for voicing but had
not been voiced when presented to participants, we removed these
four nonwords from further consideration, leaving us with 7996
unique strings for analysis. The experiment was therefore analyzed
using 7996 strings and sound files (average [SD] orthographic
length: 6.1 [1.0], range: 3–8; average [SD] number of syllables:
1.9 [0.6], range: 1–4).

As outlined in detail in the following section, we asked partici-
pants to make a yes/no decision about whether a string was a good
exemplar for each of 18 categories.6 The 18 category labels we used
6 Participants actually made decisions about 20 categories. In response to reviewer
feedback (and pace Lee Wurm) in this paper we report results for only 18 of those
categories, disregarding the terms that anchor the ad hoc dimension dangerous/safe.

http://www.psych.ualberta.ca/<ucode type=
http://www.psych.ualberta.ca/<ucode type=


Table 2
Correspondence of Apple’s phonological representation to the International Phonetic
Alphabet. 41 phonemes were used in this study. Consonants not listed here are
represented in both systems by their standard orthographic forms.

Example Apple IPA Stress

cat AE æ
mate EY eɪ
rock AA ɒ
caught AO ɔː
seed IY i:
side AY aɪ
sick IH ɪ Stressed
roses IX ɪ Unstressed
bed EH e
coat OW əʊ
food UW uː
cow AW aʊ
coy OY ɔɪ
cut UX ʌ Stressed
about AX ə Unstressed
foot UH ʊ
hurt AXr ɜː
thin T h
then D ð
shoe S ʃ
azure Z ʒ
cheese C tʃ
jump J dʒ
sing N N
yes y dʒ
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are shown in Fig. 1, which we discuss in more detail below. Six of
those labels were chosen because they are anchors of a polar dimen-
sion that has previously been associated with sound symbolism
Fig. 1. Hit rates (agreement with human decisions) for 18 semantic categories. The six ca
had estimated membership probability in one pole (e.g., large)- estimated membership pr
categories are reliable with p < .05. See the associated tables for more details on how th
(large/small, sharp/round, feminine/masculine). The remaining 12 were
nouns chosen because previous studies had found them to be rated
at the extreme ends of valence (Warriner, Kuperman, & Brysbaert,
2013) and concreteness (Brysbaert, Warriner, & Kuperman, 2014),
two features which have been argued to play a central role in the
structure of semantics (Hollis & Westbury, 2016). In particular, we
chose three nouns for each of the four categories: high valence/high
concreteness (flower, gem, toy), high valence/low concreteness (wis-
dom, spirituality, virtue), low valence/high concreteness (wasp, bomb,
fungus) and low valence/low concreteness (sadness, fraud, injustice).
In the Warriner et al. study from which the valence ratings were
drawn, valence was rated on a nine-point scale; we conducted an
independent samples t-test to confirm that low valence nouns (M
= 2.48, SD = 0.26, range: 2.05–2.79) had a significantly lower rating
than high valence nouns (M = 7.31, SD = 0.39, range: 6.70–7.94), t
(10) = 25.05, p < .001. In the Brysbaert et al. study from which the
concreteness ratings were drawn, concreteness was rated on a
five-point scale; we conducted an independent samples t-test to
confirm that low concreteness nouns (M = 1.52, SD = 0.26, range:
1.07–1.82) had a significantly lower rating than high concreteness
nouns (M = 4.87, SD = 0.15, range: 4.59–5.00), t(10) = 27.31, p <
.001. For analyses, nonword judgments for nouns in each category
were combined to allow us to examine the polar dimensions of
valence and concreteness (e.g., examining the phonemes that were
associated with high valence items).
Procedure

Participants were seated in front of a computer. After answering
some simple demographic questions, they were given the follow-
ing written instructions:
tegories in grey reflect ‘high confidence’ judgments on the subset of decisions which
obability in its opposing pole (e.g., small) > 0.30. Hit rates for all except the last three
ese hit rates were achieved (i.e., true positive and true negative rates).



7 Following the IPA consonant chart in this book, we placed /l/ and /r/ into their
own categories, rather than breaking them down into lateral and alveolar approx-
imants. The phoneme /r/ is complex and highly variable in English; other decisions
might be deemed more appropriate by some.
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‘‘We are interested in how people decide what makes a good
word in English. In this experiment, we are going to ask you
to make simple yes/no decisions about whether a nonword
string might make a good word in English for a particular
category.
We will show you a category name on the screen. For example,
we might show you ’A name for a vegetable’. Shortly after the
category appears you will see a nonword printed in larger let-
ters above that category name. At the same time, the computer
will pronounce the nonword. If you think it would make a good
word for that category, hit the ’c’ key, for ’correct’. If you think it
would not make a good word or are not sure or have no opinion,
hit the ’x’ key, for ’incorrect’.
There are no right or wrong answers; we are just interested in
your gut instinct. There is no requirement that you accept or
reject equal numbers of words so do not let your decision be
influenced by your previous decisions. Just decide about each
string by itself.
We will start with two examples to get you used to the task.”

Participants were then asked to put on headphones through
which the stimuli were presented aurally. The two examples that
followed were nonword strings and category labels that were not
used in the experiment, asking (in randomized order) whether
the nonword dalmulwas a good name for A type of car and whether
the nonword telch was a good name for A vegetable. After the two
examples were shown, participants were asked if they had any
questions. When they were satisfied that they had none, they were
asked to begin the experiment, and were left alone to complete the
task.

The stimuli were presented using custom-written software. The
category names were presented in 36-point dark grey (‘Gray30’;
RGB 77,77,77) Times font for 750 ms. After that, participants saw
a ‘+’ above the category name to orient them, replaced 250 ms later
by the presentation above the category name of the nonword in 64
point black Times font which was presented simultaneously in the
auditory modality. The category name stayed on screen when the
nonword was presented, and both the category name and the non-
word stayed on screen until the participant made a legal key press,
in order to eliminate any reliance on memory. The ITI was 1000 ms.
After 100 trials, the participants were given a self-timed break. We
inserted this break (and cut the number of stimuli presented from
our originally-intended 400 to 200) because pilot testing suggested
that the task became difficult and frustrating after participants had
made many decisions.

Every participant was required to make ten decisions in all 20 of
the original categories, or 200 decisions in all. Since we had 214
subjects, we obtained 2140 decisions per category. It is key to this
experiment that we started with 40 times more nonword stimuli
(8000) than any individual participant saw (200), and that each
participant’s file was randomly generated for that participant
(although the original 8000 nonwords were selected without
replacement until they were all used, so each of the 8000 non-
words was used equally often). These experimental features are
key because it is by their means that we separated particular non-
words from particular semantic categories. No single nonword was
ever presented more than six times across the entire duration of
the experiment (each of 215 participants saw 200 [1/40th] of
8000 stimuli, so we ran through the stimulus set 215/40 = 5.375
times; i.e., 0.375 ⁄ 8000 = 3000 strings were used six times).
Almost all (91.7%) of the 7996 nonwords were judged just a single
time, across all participants, within any semantic category. Eight
percent were judged twice, and just 0.3% were judged as many
as three times. Given this near-complete separation of nonwords
from categories, any findings of a consistent relationship between
nonword form and semantics must be due to the features, pho-
nemes, or letters in the strings, and not to any other characteristics
such as, for instance, resemblance of nonwords to particular exem-
plars of or labels for a semantic category (i.e., not due to semantic
priming via form resemblance, as, say, the nonword floable might
make a person think of roundness because it rhymes with global).

Analysis

Because our analyses were numerous and identical for each
dimension we considered, we begin here with an outline of the
structure of those analyses.

Each pole of each dimension was modeled separately (recall
that participants made decisions about only one end of the contin-
uum at a time). For each pole, we computed three separate regres-
sion models based on counting the occurrences in each string of
three formal characteristics of each nonword string: phonetic fea-
tures (as defined in International Phonetic Association, 1999)7;
phonemes (as defined by Apple’s phoneme set) and common
biphones (defined as those that occurred at least 200 times in our
stimulus set); and letters and common bigrams (defined the same
way). We used binomial regression models to model the acceptance
rates in each category. Predictors were entered together, and
removed in order of decreasing p value until only predictors that
contributed at a probability of p < .001 (usually much less) remained.
The t and p values for each predictor are reported.

We also report a fourth hybrid model for each pole of each
dimension that used the predictors that had entered into all six
base models to predict responses to each pole, removing predictors
in the same way until those that remained contributed with p <
.001. When predictors in the model were perfectly correlated
(e.g., letter.l and LATERAL.APPROXIMANT, letter.r and ALVEOLAR.
APPROXIMANT), we left in features over phonemes, and phonemes
over letters.

For all four models of each dimensional anchor, we report six
performance measures that are relevant to assessing howwell they
performed. The first measure is the cross-validated hit rate, the
number of times the binary model’s classification probability
(rounded to a binary integer, i.e., 1 or 0) agreed with the classifica-
tion of experimental participants for all strings that were actually
seen by participants, cross-validated with k-fold cross-validation
(k = 10). The second measure is the observed hit rate, the exact
observed hit rate for all strings that were actually seen by partici-
pants. These measures are the same, with and without cross-
validation; we provide both to confirm that observed hit rates
are not due to over-fitting. The observed hit rate is broken down
into two parts: the true positive rate (how often the model correctly
predicted the acceptance of a presented string) and the true nega-
tive rate (how often the model correctly predicted the rejection
of a presented string). For each of these two hit rates we also report
d0, a standardized measure of signal detection accuracy. This is nec-
essary because it is possible to achieve a high true positive or true
negative rate at the expense of also having a high false positive or
false negative rate. In the extreme, it would be possible for a model
to predict string acceptance in any category with 100% accuracy
simply by predicting that every string was accepted.

These models are all limited in two ways. One way is that they
each predict only a single pole of each dimension. It is obvious that
models which synthesize the evidence against or in support of
membership in the categories defined by both poles are likely to
outperform those which predict only a single pole, since the syn-
thetic models are able to access more relevant information. The
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second limitation is that the models report performance for all pre-
sented strings. This must be an under-estimation of the true size of
any sound symbolism effects since many strings are likely to be
completely unrelated to the dimension of interest, and must there-
fore be judged randomly by the participants in our experiment. By
analogy, if we forced experimental participants to decide if pre-
sented images represented plants or animals, but included pictures
of rocks, we would have to expect random performance on the
images of rocks. Participants faced with the unreasonable demand
to classify rocks as either animals or plants have no choice but to
choose randomly. That some (indeed, most) nonword strings will
be non-sound-symbolic within any given category is an inevitable
consequence of having only a small number of predictors relevant
to any category. Since cues are rare and strings are short (or, to be
more precise, since the ratio of the number of available cues to the
number of cues per string is high), many strings will certainly con-
tain none of those predictors, and thus contain no relevant discrim-
inative information at all about their suitability to symbolize that
category. This is especially true if, as we proposed earlier and will
evaluate later, common cues (such as phonological features) are
less likely to be discriminative than rare cues.

In order to address these two limitations (i.e., predicting only a
single pole of each dimension and reporting performance for all
presented strings), we also report performance on the subset of
presented strings for which each model had ‘high confidence’,
defined here (in the absence of any formal arguments for or against
any difference) as an absolute difference in classification probabil
ity > .30. For this subset of strings (and for each pole), we report
the last five performance measures described above, as well as
the proportion of strings seen by participants that met this crite-
rion. When we wish to reference a model for the entire dimension
rather than as model for one pole of the dimension, we will be ref-
erencing these hybrid models, using the notation x/y to refer to the
model defined by subtracting estimates from the high confidence
model of y from estimates from the high confidence model of x
(i.e., masculine/feminine = estimated probability of being masculine
- estimated probability of being feminine, confined to that subset
of strings for which the absolute value of this difference > 0.30).

Having so many measures for so many models of each of two
poles of a dimension is a mixed blessing. Although the plethora
of measures enables us to assess each model in a fine-grained
way, it also complicates any attempt to adjudicate the question:
Which model is best? A model might have a very high hit rate, but
achieve that hit rate by having a very high true negative rate cou-
pled with a very low true positive rate. Or again, a ‘high confidence’
model might have a high true and false positive rate, but achieve
that hit rate by being able to classify only a very tiny proportion
of presented strings. Which model is ‘best’ is ultimately a matter
of taste, and a function of what one is trying to achieve and what
values one wishes to maximize. We will highlight strengths and
weaknesses of each model in our discussion.

For the hybrid models, we present the ten strings predicted by
the model to be most and least likely exemplars at each pole,
regardless of whether any of those strings were actually judged
by any experimental participant. This allows the reader to assess
the face validity of the model.
Results

Commonly-studied sound symbolism categories

Because they were selected for different reasons, and modeled
using different methods, we present and discuss results from the
commonly-studied sound symbolism categories separately from
the semantic categories. We discuss the overall statistical proper-
ties of the predictors in the general discussion after presenting
both categories. We begin with the former, which were modeled
by directly asking participants if a string was a good exemplar of
a name for a thing described by one of the poles: i.e., a round thing.
Dimension 1: Round/Sharp
Perhaps the best-known dimension in sound symbolism

research is the dimension of round/sharp, first described by
Köhler (1929, 1947). Ever since Köhler’s work, sharpness has been
associated with voiceless stop consonants such as /k/ and /t/, and
roundness with sonorants such as /m/ and /l/, as well as with the
voiced stop consonant /b/. Some have also suggested that there
are vowel predictors of these categories, with sharpness being
associated with unrounded front vowels, and roundness being
associated with rounded back vowels (e.g., Nielsen & Rendall,
2011). D’Onofrio (2014) extended this, pointing out that the strings
originally used by Kohler ‘‘differed from one another in vowel
roundedness and vowel backness, but also in continuant nature
of consonants, sonority of consonants, voicing of consonants, and
place of articulation of consonants” (p. 368–369).

The results shown graphically in Fig. 1 and presented numeri-
cally in Table 3 suggest that both poles of this dimension are
among the most predictable of those we examined, with a maximal
classification agreement rate for the category sharp among the
strings classified with high confidence by the hybrid model as
sharp of 73% (p < 2E�16; True negative = 43%; d0 = 0.87; True posi
tive = 30%; d0 = 0.62; 31% of seen strings classified) and a maximal
classification agreement rate for the category round among the
strings classified with high confidence using the hybrid model of
73% (p < 2E�16; True negative = 31%; d0 = 0.46; True positive = 43
%; d0 = 1.08; 34% of seen strings classified).

The two hybrid models largely support traditional findings,
showing voiceless stop consonants (letter.k, letter.c, letter.t, and
letter.x) as indicators of sharpness (and/or negative indicators of
roundness) and the voiced stop consonant phoneme.b /b/ as one
indicator of roundness (or, more precisely, as a negatively-
weighted indicator of sharpness). Three phonemes (central mid
phoneme.OW /əʊ/, closed back phoneme.UW /uː/, and open back
phoneme.AA /ɒ/) and the continuant letter.m were also weighted
as negative signs of sharpness.

The feature models were the weakest, as predicted by a signal
detection perspective on sound symbolism. Although they
achieved respectable hit rates of 74% for both the sharp and the
round category on the strings classified with high confidence, the
feature models did so at a high cost in terms of the percentage of
strings they could classify with such confidence (Sharp: 11%,
Round: 12%, compared to 32% respectively for the two classes clas-
sified by the hybrid model).

The base models built on phonemes and letters included many
expected predictors weighted directionally according to traditional
understanding, as discussed above: e.g., positive weights for sharp
on letter.x, letter.k, letter.c, and letter.t; negative weights for sharp
on phoneme.b and phoneme.m; positive weights for round on let-
ter.o and letter.u; and negative weights for roundness on letter.k,
letter.t, phoneme.t /t/, and phoneme.k /k/, as well as on two
bigrams, bigram.am and bigram.bl. As shown in Table 4, the letter
model makes errors because it does not ‘know’ that initial-k is
silent before n (as in knitsky), or that initial-x (as in xykipt) is likely
to be pronounced as a voiced alveolar fricative /z/. Of course it
would be very easy to adjust the models to account for these
anomalies, but since they affect only a few words, there are many
analogous anomalies in English that are equally deserving of spe-
cial treatment, and because such post hoc tinkering is against the
‘no selection of stimuli’ spirit that animates this investigation, we
have not attempted to do so.



Table 3
Model summary for categories sharp and round. Predictors are ordered by decreasing magnitude of beta weight. Predictors with a positive weight are shown in bold. CV: K-fold cross-validated hit rate (k = 10). Hits: Exact observed hit
rate. TP: True positive rate. TN: True negative rate. Difference models are limited to high confidence strings, defined as estimated to have a difference in probability of belonging to one category (sharp or round) – probability of
belonging the other pole > 0.30. Proportion: Proportion of seen strings in the difference model.

Model Sharp Estimate SE t Pr(>|t|) Performance Difference model Round Estimate SE t Pr(>|t|) Performance Difference model

Features (Intercept) 0.02 0.08 0.24 0.81 CV: 0.588 PROPORTION: 0.11 (Intercept) 0.61 0.12 4.97 7.19E�07 CV: 0.608 PROPORTION: 0.12
BILABIAL �0.46 0.07 �6.21 6.48E�10 HITS: 0.6 HITS: 0.74 LATERAL.APPROXIMANT 0.54 0.09 5.88 4.67E�09 HITS: 0.61 HITS: 0.74
VOICED �0.3 0.06 �4.62 4.14E�06 TP: 0.17 TP: 0.21 LABIODENTAL �0.45 0.11 �4.28 1.98E�05 TP: 0.24 TP: 0.53
VELAR 0.27 0.07 3.8 0.000149 TP d0: �0.29 TP d0: 0.11 VELAR �0.39 0.07 �5.36 9.14E�08 TP d0: 0.06 TP d0: 1.53

TN: 0.42 TN: 0.53 FRONT �0.38 0.06 �6 2.39E�09 TN: 0.37 TN: 0.21
TN d0: 0.86 TN d0: 1.5 ALVEOLAR �0.33 0.05 �6.17 8.40E�10 TN d0: 0.65 TN d0: 0.07

NASAL 0.31 0.07 4.1 4.36E�05

Phonemes (Intercept) �0.07 0.07 �1.01 0.31 CV: 0.617 PROPORTION: 0.27 (Intercept) 0.17 0.08 2.22 0.03 CV: 0.621 PROPORTION: 0.27
Phoneme.OW �0.85 0.19 �4.4 1.15E�05 HITS: 0.62 HITS: 0.69 Biphone.IYAX 1.17 0.25 4.72 2.57E�06 HITS: 0.62 HITS: 0.7
Phoneme.UW �0.82 0.19 �4.41 1.09E�05 TP: 0.14 TP: 0.27 Phoneme.z �0.81 0.21 �3.77 1.65E�04 TP: 0.28 TP: 0.4
Phoneme.b �0.72 0.12 �5.87 5.21E�09 TP d0: �0.54 TP d0: 0.39 Phoneme.t �0.54 0.1 �5.45 5.51E�08 TP d0: 0.3 TP d0: 1.01
Phoneme.k 0.68 0.09 7.59 4.86E�14 TN: 0.48 TN: 0.42 Phoneme.IY �0.53 0.12 �4.26 2.15E�05 TN: 0.35 TN: 0.3
Phoneme.m �0.59 0.12 �5.04 5.05E�07 TN d0: 1.33 TN d0: 0.83 Phoneme.k �0.46 0.09 �4.89 1.11E�06 TN d0: 0.49 TN d0: 0.35
Phoneme.AA �0.46 0.12 �3.9 0.0001 Phoneme.IH �0.44 0.1 �4.48 7.98E�06

Phoneme.m 0.44 0.11 3.92 8.97E�05
Phoneme.b 0.42 0.11 3.79 0.000154

Letters (Intercept) �0.37 0.08 �4.53 6.13E�06 CV: 0.624 PROPORTION: 0.31 (Intercept) �0.35 0.07 �4.74 2.27E�06 CV: 0.636 PROPORTION: 0.33
Letter.x 1.87 0.47 3.96 7.89E�05 HITS: 0.63 HITS: 0.71 Letter.k �1.04 0.17 �6.12 1.11E�09 HITS: 0.64 HITS: 0.71
Letter.k 0.75 0.15 5.05 4.84E�07 TP: 0.22 TP: 0.29 Bigram.am 0.96 0.25 3.85 0.00012 TP: 0.26 TP: 0.41
Letter.c 0.57 0.09 6.44 1.47E�10 TP d0: 0.04 TP d0: 0.53 Bigram.bl 0.86 0.23 3.73 0.00020 TP d0: 0.2 TP d0: 1.04
Letter.b �0.53 0.11 �4.73 2.42E�06 TN: 0.41 TN: 0.41 Letter.o 0.63 0.08 8.19 4.63E�16 TN: 0.37 TN: 0.31
Letter.m �0.51 0.12 �4.39 1.18E�05 TN d0: 0.8 TN d0: 0.8 Letter.t �0.47 0.09 �5.54 3.45E�08 TN d0: 0.67 TN d0: 0.37
Letter.t 0.39 0.08 4.82 1.53E�06 Letter.u 0.47 0.1 4.83 1.46E�06

Composite (Intercept) �0.33 0.08 �4.05 5.25E�05 CV: 0.636 PROPORTION: 0.31 (Intercept) �0.27 0.09 �3.0 0 CV: 0.648 PROPORTION: 0.34
Letter.x 1.81 0.47 3.83 0.000134 HITS: 0.64 HITS: 0.73 Bigram.am 1.04 0.25 4.13 3.73E�05 HITS: 0.65 HITS: 0.73
Letter.k 0.78 0.15 5.18 2.45E�07 TP: 0.22 TP: 0.3 Letter.k �0.74 0.19 �3.86 0.000116 TP: 0.27 TP: 0.43
Phoneme.OW �0.77 0.19 �3.98 7.00E�05 TP d0: 0.03 TP d0: 0.62 Letter.o 0.66 0.08 8.43 <2E�16 TP d0: 0.22 TP d0: 1.08
Phoneme.UW �0.77 0.19 �4.1 4.32E�05 TN: 0.42 TN: 0.43 LABIODENTAL �0.48 0.11 �4.52 6.65E�06 TN: 0.38 TN: 0.31
Phoneme.b �0.62 0.12 �5.01 5.93E�07 TN d0: 0.84 TN d0: 0.87 Letter.t �0.48 0.09 �5.47 4.95E�08 TN d0: 0.72 TN d0: 0.46
Letter.c 0.58 0.09 6.41 1.84E�10 Letter.u 0.47 0.1 4.78 1.84E�06
Letter.m �0.52 0.12 �4.51 6.77E�06 k �0.41 0.11 �3.8 1.49E�04
Phoneme.AA �0.45 0.12 �3.8 0.000147 LATERAL.APPROXIMANT 0.34 0.08 4 6.48E�05
Letter.t 0.41 0.08 5.03 5.20E�07
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Table 4
Ten strings predicted to be highest and lowest in probability of belonging to the categories of sharp and round, from the 7996 strings used in the experiment.

Category Sharp p(Sharp) Round p(Round) Sharp � Round p(Sharp) � p(Round)

High axittic 0.95 amorul 0.9 knitick 0.83
High xykipt 0.94 hoonous 0.9 axittic 0.83
High exiduct 0.92 hoorous 0.9 xykipt 0.8
High fixtant 0.91 boamion 0.89 fixtant 0.8
High restatex 0.91 broodam 0.89 crickty 0.79
High exignak 0.91 hoonsam 0.89 keppick 0.79
High karx 0.91 coulous 0.87 kanktil 0.77
High keex 0.91 ambous 0.87 knitsky 0.77
High knitick 0.9 hambous 0.87 karx 0.77
High cruckwic 0.9 amious 0.87 keex 0.77
Low bomble 0.07 anktify 0.09 ambula �0.73
Low bombal 0.07 keefify 0.09 goomon �0.73
Low butomy 0.07 cafttic 0.08 buroong �0.74
Low balmo 0.06 keppick 0.07 eposomo �0.76
Low bobluay 0.06 krenker 0.07 honulo �0.78
Low dobulum 0.05 kark 0.07 broodam �0.79
Low boomeo 0.05 kuket 0.07 boamion �0.79
Low boodoma 0.05 knitick 0.07 dobulum �0.79
Low brimbom 0.04 knitsky 0.07 boomeo �0.8
Low bugovo 0.04 kanktil 0.06 boodoma �0.8

Table 5
Summed sharpness weight for predictors that appeared in
the hybrid model for sharp/round.

Predictor Summed sharpness b

Letter.x 1.81
Letter.k 1.52
Letter.t 0.89
Letter.c 0.58
LABIODENTAL 0.48
Phoneme.k 0.41
LATERAL.APPROXIMANT �0.34
Phoneme.AA �0.45
Letter.u �0.47
Letter.m �0.52
Phoneme.b �0.62
Letter.o �0.66
Phoneme.OW �0.77
Phoneme.UW �0.77
Bigram.am �1.04
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Table 4 shows the top ten nonwords from the 7996 in the
experiment that the hybrid model would judge as either sharp or
round, with the probability assigned to them by regression. By sub-
tracting the probability estimate for one category from the other
(essentially creating a composite model of the dimension by sum-
ming one model with a negatively-weighted version of the other)
we can get an overall weight on the dimension. The top and bottom
nonwords on that model are also shown in Table 4. Across all 7996
strings, the estimates for the two poles are negatively correlated at
r = �0.66 (p < 2E�16; see Fig. 3), a highly reliable correlation that is
nevertheless perhaps lower might be expected for two dimensions
defined as opposites.

Discussion. As we suggested in the introduction, one benefit of
using regression to identify sound symbolic features is that it not
only allows those features to be identified, but also allows them
to be weighted. This makes it possible to address with some quan-
titative precision questions in the literature about whether it is
vowels or consonants that primarily drive the round/sharp sound
symbolism effect. To get the true weight for any character that
appears with inverse weights in both the round and sharp model,
we need to sum their absolute values: e.g., letter.k appears in the
hybrid round model with a b of �0.74 and in the sharp model with
a b of 0.78, for a total b sharp weight of 1.52. The results of this
exercise are shown in Table 5. The strongest predictor is letter.x
(Total b sharp weight: 1.81) followed closely by letter.k (Total b
sharp weight: 1.52). The third strongest predictor, with 59% the
weight of the second, is letter.t (Total b sharp weight: 0.89). The
three vowels (Phoneme.AA, Phoneme.OW and Phoneme.UW) have
total b sharp weights of �0.45, �0.77 and �0.77 respectively, sug-
gesting that they each carry less than 42% of the weight of Letter.x
(although this is partially mitigated by the separate presence of
Letter.o, with a sharpness weight of �0.66). This finding is consis-
tent with the theoretical considerations in the introduction, from
which it was predicted that common cues must necessarily be
weak cues. Letter.m is a much weaker predictor than the stop con-
sonants, with a total b sharp weight of �0.52, just under a third of
the weight on letter/phoneme k. More generally, the models make
clear that the stop consonants carry a very large proportion of the
weight in accounting for sound symbolism in this category.

One finding not previewed in the literature is the strong
weighting on round for Bigram.am. It has a large total b sharp
weight of �1.56 (�1.04 itself, plus the weight of letter.m, an addi-
tional �0.52), about 86% of the weight of letter.k, but in the oppo-
site direction. As a result of this strong weight, the bigram appears
in several of the strings most strongly predicted to be round such as
amorul, boamion, and broodam. Strings containing the Bigram.am
were accepted as round 66.25% of the time they were seen by
experimental participants (n = 80), compared to being accepted
as sharp just 40% of the time they were seen (n = 65), a reliable dif-
ference (v2(1) with Yates’ correction = 6.42, two-tailed p = .01).

One question we would like to be able to address is:Why is pho-
neme.b, a voiced plosive, associated with round (as previous work
and the models presented here suggest) when other voiced plo-
sives (letter.d and letter.g) are normally not mentioned as being
associated with either sharp or round, and do not appear in the let-
ter model? Although the models do weight phoneme.b /b/ with the
category round (Total b sharp weight: �0.62), they do not provide
any clear answer to the question of why /d/ and /g/ do not, since
none of the features that distinguish the three plosives appears
in any of the models. We can however look at this question from
the perspective of signal detection principles, and will return to
this in the final discussion, when we will have relevant evidence
from other models.

How would these models adjudicate the most famous sharp/
round stimuli, takete vs. maluma? The models assign takete a
61.1% chance of being sharp and an 8.5% chance of being round,
for a difference of 52.6%, well past the high certainty threshold
we have set. It is more difficult to adjudicate maluma, since it
depends on how it is pronounced. Assuming a short u /ʌ/, the string



Table 6
Model summary for categories large and small. Predictors are ordered by decreasing magnitude of beta weight. Predictors with a positive weight are shown in bold. CV: K-fold cross-validated hit rate (k = 10). Hits: Exact observed hit
rate. TP: True positive rate. TN: True negative rate. Difference models are limited to high confidence strings, defined as estimated to have a difference in probability of belonging to one category (large or small) – probability of belonging
the other pole > 0.30. Proportion: Proportion of seen strings in the difference model.

Model Large Estimate SE t Pr(>|t|) Performance Difference model Small Estimate SE t Pr(>|t|) Performance Difference model

Features (Intercept) �0.94 0.1 �9 <2E�16 CV: 0.58 PROPORTION: 0.19 (Intercept) 0.67 0.11 6.18 7.7E�10 CV: 0.58 PROPORTION: 0.21
BACK 0.36 0.07 4.79 1.83E�06 HITS: 0.58 HITS: 0.68 POSTALVEOLAR �0.77 0.16 �4.98 0.000000699 HITS: 0.58 HITS: 0.64
VOICED 0.2 0.04 4.88 1.16E�06 TP: 0.01 TP: 0.01 GLOTTAL �0.77 0.19 �4.1 0.0000421 TP: 0.26 TP: 0.61

TP d0: �2.11 TP d0: �1.84 VOICED �0.3 0.04 �7.04 2.58E�12 TP d0: 0.17 TP d0: 2.64
TN: 0.57 TN: 0.67 TN: 0.31 TN: 0.03
TN d0: 2.67 TN d0: 2.62 TN d0: 0.31 TN d0: �1.55

Phonemes (Intercept) �0.77 0.06 �12.41 <2E�16 CV: 0.626 PROPORTION: 0.013 (Intercept) 0.08 0.06 1.42 0.16 CV: 0.55 PROPORTION: 0.0164
biphone.AXs 0.89 0.22 4.15 3.51E�05 HITS: 0.63 HITS: 0.74 Phoneme.r �0.4 0.08 �5.33 1.11E�07 HITS: 0.55 HITS: 0.63
g 0.87 0.14 6.39 1.99E�10 TP: 0.14 TP: 0.74 TP: 0.3 TP: 0
AA 0.64 0.12 5.47 4.98E�08 TP d0: �0.53 N/A TP d0: 0.44 N/A
b 0.58 0.11 5.52 3.91E�08 TN: 0.49 TN: 0 TN: 0.25 TN: 0.63
biphone.AXn 0.53 0.14 3.83 0.000133 TN d0: 1.32 N/A TN d0: �0.09 N/A

Letters (Intercept) �0.98 0.08 �11.75 <2E�16 CV: 0.62 PROPORTION: 0.023 (Intercept) 0.25 0.06 3.94 8.41E�05 CV: 0.58 PROPORTION: 0.0294
Bigram.oo �1.05 0.28 �3.75 0.00018 HITS: 0.63 HITS: 0.66 Letter.h �0.49 0.11 �4.51 6.93E�06 HITS: 0.58 HITS: 0.65
Bigram.um 0.96 0.25 3.87 0.00011 TP: 0.13 TP: 0.66 Letter.g �0.43 0.11 �3.98 7.04E�05 TP: 0.22 TP: 0
Letter.o 0.69 0.09 7.55 6.38E�14 TP d0: �0.55 N/A Letter.r �0.4 0.07 �5.39 7.75E�08 TP d0: �0.09 N/A
Letter.g 0.66 0.11 5.94 3.28E�09 TN: 0.5 TN: 0 TN: 0.36 TN: 0.65
Letter.b 0.48 0.1 4.87 1.22E�06 TN d0: 1.4 N/A TN d0: 0.6 N/A
Letter.a 0.27 0.07 3.78 0.000159

Composite (Intercept) �0.87 0.07 �12.36 <2E�16 CV: 0.614 PROPORTION: 0.14 (Intercept) 0.69 0.11 6.19 7.11E�10 CV: 0.58 PROPORTION: 0.15
Bigram.oo �1.06 0.28 �3.78 0.00016 HITS: 0.62 HITS: 0.73 Letter.h �0.66 0.11 �5.76 9.87E�09 HITS: 0.5 HITS: 0.63
Phoneme.g 0.88 0.14 6.48 1.14E�10 TP: 0.13 TP: 0.01 VOICED �0.31 0.04 �7.16 1.15E�12 TP: 0.44 TP: 0.61
Phoneme.b 0.52 0.11 4.88 1.13E�06 TP d0: �0.55 TP d0: �1.59 TP d0: 1.76 TP d0: 2.76
Letter.o 0.5 0.09 5.67 1.63E�08 TN: 0.49 TN: 0.72 TN: 0.06 TN: 0.03
BACK 0.33 0.08 4.21 2.66E�05 TN d0: 1.3 TN d0: 3.07 TN d0: �1.49 TN d0: �1.61

C.W
estbury

et
al./Journal

of
M
em

ory
and

Language
99

(2018)
122–

150
135



Table 7
Ten strings predicted to be highest and lowest in probability of belonging to the categories of large and small, from the 7996 strings used in the experiment.

Large p(Large) Small p(Small) Large � Small p(Large) � p(Small)

globlor 0.9 accrel 0.67 glozzho 0.44
sogung 0.89 aciess 0.67 bomburg 0.43
bomburg 0.87 ackel 0.67 bugovo 0.43
bugovo 0.87 acken 0.67 gragwom 0.41
globion 0.87 acket 0.67 bongard 0.41
globson 0.87 ackey 0.67 globlor 0.38
grobson 0.87 ackic 0.67 sogung 0.37
canagog 0.85 ackie 0.67 horgous 0.36
epsigog 0.85 ackiff 0.67 gotod 0.36
glonk 0.85 ackis 0.67 globion 0.35
ackiff 0.3 chithet 0.35 ackis �0.37
ackie 0.3 chirish 0.35 ackiff �0.37
ackic 0.3 chenth 0.35 ackie �0.37
ackey 0.3 chash 0.35 ackic �0.37
acket 0.3 chalish 0.35 ackey �0.37
acken 0.3 chalchin 0.35 acket �0.37
ackel 0.3 hurgh 0.28 acken �0.37
aciess 0.3 hanzhor 0.28 ackel �0.37
achem 0.3 hatcherb 0.28 aciess �0.37
accrel 0.3 chithway 0.28 accrel �0.37
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has a 54.9% chance of being round and a 20.2% chance of being
sharp, for a difference of 34.7%, again past the high confidence
threshold for being round. If it is rather a long /uː/, there is an addi-
tional piece of strong evidence against the string being sharp, drop-
ping the sharp probability to just 10.5%.

Dimension 2: Large/Small
Perhaps the second most common dimension for sound sym-

bolism in the previous literature is large/small. In general, research
has suggested that nonwords containing open-back vowels/closed-
front vowels are more appropriate as labels for large and small tar-
gets, respectively (Newman, 1933; Sapir, 1929). There is also some
evidence that this association has affected existing vocabularies.
Jespersen (1925) noted long ago that:

‘‘The vowel [i], especially in its narrow or thin variety, is partic-
ularly appropriate to express what is small, weak, insignificant,
or, on the other hand, refined or dainty. It is found in a great
many adjectives in various languages, e.g., little, petit, piccolo,
piccino, Magy. [Magyar, or Hungarian], kis, E. wee, tiny, (by chil-
dren often produced teeny [. . .]), slim, Lat. minor, minimus, Gr.
mikros [. . .] The same vowel is found in diminutive suffixes in
a variety of languages as E. –y, -ie (Bobby, baby, auntie, birdie),
Du. –ie, -je (koppie ‘little hill’), Gr. -i- (paid-i-on ‘little boy’), Goth.
–ein [. . .] (gumein ‘little man’), E. –kin, -ling, Swiss German –li, It.
–ino, Sp. –ico, -ito, -illo. . ..[sic]” (p. 402).

Ultan (1978) surveyed 136 languages and found that those
using vowel ablauting to express diminutive concepts tended to
do so with closed-front vowels. In addition, Blasi et al. (2016)
found that in their sample of nearly two-thirds of the world’s lan-
guages, words for small tended to contain the vowel /i/.

The models for these two classes are presented in Table 6. They
differ in several ways from the models for sharp/round, notably by
being generally worse models. Also notable is the fact that there
are many positively weighted predictors for large, but none (and
relatively few negative predictors) for small.

The high-confidence phonological feature model for large
achieves a large negative true positive d0 value of �2.11. As this
value suggests, the model attains its hit-rate of 68% (on 19% of seen
stimuli) almost entirely on the strength of true negatives (True
negative rate: 0.67; True negative d0: 2.62), at the expense of
true positives. The high confidence phonological feature model
for small classified 21% of seen stimuli, with a true positive rate
of 0.61 (d0 = 2.64) but a poor true negative rate of 0.03 (d0 = �1.55).
The phoneme model for small is worse, consisting of just a sin-
gle negatively-weighted predictor (b = �0.4), phoneme.r. Not sur-
prisingly given the paucity of predictors, the high confidence
model was poor, with a hit rate of 63%, attained entirely by true
negatives. Moreover, it only classified 1.6% of all judged words,
indicating that it differentiated little in probability of classifying
a string to either category. The letter model was about as poor,
and can be characterized sufficiently here by noting that the high
confidence model also had a true positive rate of 0.

The hybrid model for large consisted of four positively weighted
cues (phoneme.g, phoneme.b, letter.o, and the feature BACK, all
consistent with previous work) and one strongly negatively
weighted feature, bigram.oo (b = �1.06). This high confidence
model was able to correctly classify 73% of 14% of seen stimuli,
though again almost entirely on the strength of correctly identify-
ing true negatives (True positive rate: 0.01, d0 = �1.59; True nega-
tive rate = 0.72, d0 = 3.07). The high confidence hybrid model for
small consisted of just two weakly negative predictors: letter.h
(b = �0.66) and the feature VOICED (b = �0.31). Note that these
two predictors are both common and have low b weights, as pre-
dicted by a signal detection view of sound symbolism. The model
nevertheless achieved a good true positive rate (0.61, d0 = 2.76) in
classifying the 15% of seen stimuli that showed a strong difference
in classification probability (True negative rate = 0.03, d0 = �1.61).

The 20 strings judged by the hybrid models to be most strongly
weighted in either category are shown in Table 7. Note that the
probabilities attached to words judged large are much higher (with
a maximum p = 0.90) than the probabilities attached to words
judged small (maximum p = 0.67). The estimates are negatively
correlated at just r = �0.34 (p < 2E�16), suggesting a large degree
of independence between these two poles. As shown in Fig. 3,
the estimates from small are almost uncorrelated with any other
measures. This contrasts with the estimates for large, which shows
a strong positive correlation with estimates for the category round
(r = 0.47, p < 2E�16); strong negative correlations with estimates
for the categories feminine (r =�0.39, p < 2E�16), sharp (r = �0.31,
p < 2E�16) and flower (r = �0.28, p < 2E�16); and a highly reliable
but weaker positive correlation with the category masculine
(r = 0.09, p < 2E�16). This seems to suggest a central role for
large in sound symbolism, since sound symbolism in many other
categories seems to partially ‘piggyback’ on it.

Discussion. In this case, it might be argued that the hybrid mod-
els are not the best models. The phonological feature models clas-
sify a larger proportion of stimuli almost as well or better than the



Fig. 2. Acceptance and rejection rates as small, for strings containing vowel-r.

Fig. 3. Graphic representation of correlations between hybrid model estimates. Link width and color both show correlation magnitude. Correlations with a magnitude less
than 0.1 are not shown.
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hybrid models, with the same pattern of results (excellent true
negative performance for large; and excellent true positive perfor-
mance for small) and using only four predictors: BACK, POSTAL-
VEOLAR, GLOTTAL, and VOICED (which appears in both models
with opposite signs). These models can be succinctly (if somewhat
over simplistically) summarized by saying that strings that do not



Table 8
Model summary for categoriesmasculine and feminine. Predictors are ordered by decreasing magnitude of beta weight. Predictors with a positive weight are shown in bold. CV: K-fold cross-validated hit rate (k = 10). Hits: Exact observed
hit rate. TP: True positive rate. TN: True negative rate. Difference models are limited to high confidence strings, defined as estimated to have a difference in probability of belonging to one category (masculine or feminine) – probability
of belonging the other pole > 0.30. Proportion: Proportion of seen strings in the difference model.

Model Masculine Estimate SE t Pr(>|t|) Performance Difference model Feminine Estimate SE t Pr(>|t|) Performance Difference model

Features (Intercept) 0.11 0.06 2.02 0.04 CV: 0.55 PROPORTION: 0.038 (Intercept) �0.48 0.14 �3.47 5.29E�04 CV: 0.62 PROPORTION: 0.043
CLOSE �0.29 0.06 �4.52 6.68E�06 HITS: 0.55 HITS: 0.63 VELAR �0.46 0.08 �5.98 2.57E�09 HITS: 0.60 HITS: 0.7

TP: 0.29 TP: 0.26 CLOSE.MID 0.46 0.09 5.34 1.06E�07 TP: 0.21 TP: 0.36
TP d0: 0.28 TP d0: 0.35 FRONT 0.45 0.07 6.86 9.01E�12 TP d0: 0.09 TP d0: 0.94
TN: 0.27 TN: 0.37 LATERAL.APPROXIMANT 0.35 0.09 4.07 4.78E�05 TN: 0.39 TN: 0.34
TN d0: 0.06 TN d0: 0.48 VOICED �0.25 0.05 �5.38 8.13E�08 TN d0: 0.52 TN d0: 0.44

Phonemes (Intercept) 0.08 0.05 1.59 0.11 CV: 0.54 PROPORTION: 0.0697 (Intercept) �0.09 0.07 �1.27 0.21 CV: 0.61 PROPORTION: 0.069
biphone.lIH �1.08 0.29 �3.77 1.69E�04 HITS: 0.54 HITS: 0.68 Phoneme.g ��0.73 0.15 �4.74 2.26E�06 HITS: 0.62 HITS: 0.77
Phoneme.IY �0.52 0.11 �4.71 2.64E�06 TP: 0.41 TP: 0.61 Phoneme.f 0.54 0.12 4.63 3.87E�06 TP: 0.05 TP: 0.07

TP d0: 1.21 TP d0: 2.75 Phoneme.r �0.47 0.08 �5.76 9.77E�09 TP d0: �1.21 TP d0: �0.66
TN: 0.13 TN: 0.07 Phoneme.k �0.4 0.09 �4.31 1.69E�05 TN: 0.56 TN: 0.7
TN d0: �0.81 TN d0: �1.02 TN d0: 1.96 TN d0: 2.45

Letters (Intercept) 0.16 0.06 2.84 0.005 CV: 0.57 PROPORTION: 0.12 (Intercept) �0.57 0.08 �7.2 8.47E�13 CV: 0.64 PROPORTION: 0.11
Bigram.fl �1.25 0.29 �4.32 1.63E�05 HITS: 0.57 HITS: 0.63 Bigram.cr �1.33 0.37 �3.59 0.000344 HITS: 0.63 HITS: 0.83
Bigram.ic 0.9 0.22 4.01 6.27E�05 TP: 0.32 TP: 0.54 Bigram.ar �0.8 0.18 �4.47 8.10E�06 TP: 0.1 TP: 0.08
Letter.y �0.69 0.17 �4.19 2.88E�05 TP d0: 0.52 TP d0: 2.1 Letter.k �0.77 0.16 �4.86 1.27E�06 TP d0: �0.77 TP d0: �0.29
Letter.i �0.39 0.08 �4.76 2.10E�06 TN: 0.24 TN: 0.09 Letter.g �0.66 0.12 �5.39 7.72E�08 TN: 0.53 TN: 0.75

TN d0: �0.08 TN d0: �0.97 Letter.a 0.44 0.07 5.89 4.45E�09 TN d0: 1.56 TN d0: 2.52
Letter.i 0.39 0.08 4.94 8.37E�07

Composite (Intercept) 0.16 0.06 2.84 0.005 CV: 0.57 PROPORTION: 0.12 (Intercept) �0.46 0.14 �3.3 0.00097 CV: 0.62 PROPORTION: 0.11
Bigram.fl �1.25 0.29 �4.32 1.63E�05 HITS: 0.57 HITS: 0.63 Phoneme.k �0.59 0.1 �6.12 1.12E�09 HITS: 0.61 HITS: 0.7
Bigram.ic 0.9 0.22 4.01 6.27E�05 TP: 0.32 TP: 0.54 Letter.g �0.5 0.13 �3.96 7.86E�05 TP: 0.24 TP: 0.34
Letter.y �0.69 0.17 �4.19 2.88E�05 TP d0: 0.52 TP d0: 2.1 CLOSE.MID 0.48 0.09 5.57 2.96E�08 TP d0: 0.27 TP d0: 1.12
Letter.i �0.39 0.08 �4.76 2.10E�06 TN: 0.24 TN: 0.09 FRONT 0.47 0.07 7.18 9.63E�13 TN: 0.37 TN: 0.36

TN d0: �0.08 TN d0: �0.97 LATERAL.APPROXIMANT 0.35 0.09 4.13 3.83E�05 TN d0: 0.41 TN d0: 0.35
VOICED �0.25 0.05 �5.21 2.06E�07
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contain voiced consonants or back vowels will not be judged large,
and strings that do contain voiced glottal, voiced, or postalveolar
consonants will not be judged small. This very brief summary is
an over-simplification because the large intercepts in both models
add some additional constraints, most notably that strings will
need several back vowels and/or voiced consonants before they
will be classified by the model as large, since the vowels cues are
weakly weighted. Since VOICED appears in both models with
opposite signs, it has a total b sharp weight in the high confidence
phonological feature models of 0.5, not just 0.2 as weighted in the
model for large. The predictor VOICED is a very strong constraint,
since there are thirteen voiced consonants.

Taken together, all the models suggest that there is an a priori
bias against strings being judged as large (most success in all large
models is attributable to success at identifying true negatives) and
in favor of them being judged as small. Less than a third as many
strings are judged with high confidence to belong to either cate-
gory as were judged to belong to the categories of round and sharp.

The negative weight of r in the letter and phoneme models for
small strings is a novel finding, though there is no similar predictor
in the final hybrid model, perhaps because of the effect of the fea-
ture VOICED. It is a reasonable hypothesis that the exclusion of r in
the model for small is to exclude r-controlled vowels (i.e., ar, er, ir,
or, ur, yr) that are not coded phonologically. However, we did not
find support for this hypothesis. Although participants did reject
strings containing r preceded by a vowel slightly more often
(61% of the time) than they rejected other strings containing
r (59% of the time), the small difference was not reliable
(v2(1) = 1.18, one-tailed p > .05).

It has been noted that ‘‘vowels often lower in the environment
of r” (Lindau, 1978, p. 556) due to the retraction of the tongue root
that is required to produce the sound (Delattre, 1956). Since r
almost always occurs before or after a vowel,8 it may be that the
negative association of rwith small is due to the effect of the lowered
vowel, since lower sounds are associated with larger entities (Fitch,
1997; Ohala, 1983, 1984). We were able to test a closely related
hypothesis: that words containing r followed by a back (lower)
vowel should be rejected at a higher rate than words containing r
followed by a front (higher) vowel. The relevant data are graphed
in Fig. 2, which shows that front-vowel strings containing ir are
accepted about as often as they are rejected, whereas strings con-
taining back-vowel ur or or are rejected more often than they are
accepted. However, by X2 test, these differences are also not reliable
(ir:ur: v2(1) with Yates’ correction = 0.35, one-tailed p > .05; ir:or:
v2(1) with Yates’ correction = 0.98, one-tailed p > .05).

Table 7 shows that the ten strings judged by the model to be
most likely to be large often combine r with phoneme.g, that are
weighted positively in the hybrid model for large, as in the strings
gragwom, grobson, and gragula. This is a predictable consequence of
the model since combining r with g raises the VOICED feature
count, pushing the string away from being considered as a candi-
date for small (three voiced consonants are sufficient to constitute
negative evidence against small in the hybrid model). Strings con-
taining gr were accepted as large 69.8% (44/63) of the time they
were judged by humans. By contrast, strings that did not contain
gr were accepted 40.7% (817/2005) of the time they were seen.
By v2 test, this is a reliable difference (v2(1) with Yates’ correc
tion = 6.78, one-tailed p = .004), supporting the idea that the pres-
ence in a string of gr is associated with acceptance of that string as
large. The same weighting considerations apply to voice plosive br,
but there are no strings containing br in the lists in Table 7. Strings
containing br were accepted as large 54.7% (40/73) of the time they
8 Apart from abbreviations and proper names, the few exceptions are limited to the
words diarrhea, errs, myrrh, and several others containing a double r; dysrhythmia and
unrhymed; and tahrs, the plural name of an Asian wild goat.
were judged by humans, not reliably different from the acceptance
rate of words that contained neither gr nor br (v2(1) with Yates’ cor
rection = 1.88, one-tailed p = .08). We will discuss the sound sym-
bolic differences between the voiced plosive consonants (including
also the conspicuously absent d) in the general discussion.

We may ask the same question as we asked for sharp/round
above: How does the model perform with perhaps the most
famous contrasting large/small pair, Sapir’s mil versus mal? Our
models do not include any characteristics that distinguish between
these strings, although by weighting the feature BACK positively
for large, they do suggest a better contrast would have been
(e.g.,) mil/mol (though now we have two English word homo-
phones, and a mill is almost always smaller than a mall) or
mil/mool.

Dimension 3: Masculine/Feminine
Previous work on masculine/feminine sound symbolism has

drawn parallels to work on both sharp/round and large/small
sound symbolism. Sidhu and Pexman (2015); see also Sidhu,
Pexman, & Saint Aubin, 2016; Cassidy, Kelly, & Sharoni, 1999)
showed a relationship between female names and round shapes
and between male names and sharp shapes. Sidhu and Pexman
(2015) also demonstrated that the most frequent female names
contained significantly more consonants that would be considered
round-sounding than sharp-sounding. As mentioned briefly in the
introduction, Jespersen (1925) specifically suggested that the
phonological predictors of smallness should also be predictors of
femininity since ‘‘smallness and weakness are often taken to be
characteristic of the female sex” (p. 402). Indeed, Tarte (1982)
found that the closed-front vowel /i/ was associated with feminin-
ity, while the open-back vowel /ɑ/ was associated with
masculinity.

The models for predicting human acceptability judgments in
these two categories are shown in Table 8. They are weaker than
the models we have considered so far.

The feature model for masculine contains a single negatively-
weighted predictor, CLOSE. The high-confidence model classified
just 3.8% of seen stimuli. It achieved a hit rate of 63% on that sub-
set, with a true positive rate of 0.26 (d0 = 0.35) and a true negative
rate of 0.37 (d0 = 0.48). The feature model for feminine consisted of
five predictors, positively-weighted FRONT, CLOSE.MID, and LAT-
ERAL.APPROXIMANT and negatively weighted VELAR and VOICED.
The high-confidence model achieved an over-all hit rate of 70% on
4.3% of seen strings (True positive rate = 0.36, d0 = 0.94; True nega-
tive rate = 0.34, d0 = 0.44). In sum, the feature models were stron-
ger at predicting decisions for feminine than masculine.

The high-confidence phonememodels of these poles show a dif-
ferent pattern, and were both poor models. The phoneme model
for masculine again contained just two negatively-weighted pre-
dictors, the CLOSE phoneme IY /i:/, traditionally associated with
smallness, and the biphone lIH /lɪ/. These two features allowed it
to classify 6.9% of seen strings with high confidence, with a hit rate
of 68% achieved at the cost of a large negative d0 of �1.02 for iden-
tifying true negatives (i.e., a marked tendency to succeed by over-
accepting strings; true positive d0 = 2.75). The female model
included a positive weight on phoneme.f, with negative weights
on phoneme.g, phoneme.r, and phoneme.k. It classified only 6.9%
of seen strings with high confidence, with a hit rate of 77%
achieved at the cost of a d0 of �0.66 for identifying true positives
(i.e., a tendency to over-reject strings; true negative d0 = 2.45).

The high-confidence letter models show the same pattern of
over-accepting strings as masculine and over-rejecting them as
feminine, resulting in the same negative d0 values as for the pho-
neme models, though they classified many more seen strings
(about 12%). The letter models introduce several bigram predic-
tors: in the masculine model, strongly negatively-weighted



Table 9
Ten strings predicted to be highest and lowest in probability of belonging to the categories of masculine and feminine, from the 7996 strings used in the experiment.

Category Masculine p(Masculine) Feminine p(Feminine) Masculine � Feminine p(Masculine) � p(Feminine)

High impicic 0.69 alyel 0.84 cruckwic 0.54
High abonic 0.66 chalial 0.84 conctic 0.51
High adiccon 0.66 heonia 0.81 agoxic 0.47
High agoxic 0.66 lotial 0.81 forghic 0.45
High alicorn 0.66 faletal 0.81 galmmic 0.45
High allic 0.66 latolen 0.81 garphic 0.45
High altice 0.66 bilial 0.8 gricker 0.45
High altric 0.66 balial 0.8 doict 0.45
High arwalic 0.66 blamial 0.8 cougzer 0.43
High blosmic 0.66 eldial 0.8 copphic 0.42
Low flobley 0.14 duckerk 0.13 flintay �0.59
Low bolfley 0.14 quask 0.13 fleipty �0.59
Low kiflis 0.13 corquass 0.13 flimeon �0.6
Low flissil 0.13 grocanx 0.13 flenia �0.6
Low flistry 0.1 grug 0.12 flemia �0.6
Low flintay 0.1 sogung 0.12 flaria �0.6
Low flindry 0.1 gaug 0.12 flamiant �0.6
Low fleipty 0.1 auggage 0.12 eaflion �0.6
Low flaityl 0.1 cruckwic 0.12 flaityl �0.62
LOW flunfle 0.09 cougzer 0.11 flissil �0.63

140 C. Westbury et al. / Journal of Memory and Language 99 (2018) 122–150
Bigram.fl and strongly positively-weighted Bigram.ic, and, in the
feminine model, strongly negatively weighted Bigram.cr and
Bigram.ar. The models also include several single letters that are
consistent with the phoneme model: letter.i is weighted negatively
in the masculine model, and letter.k. and letter.g are weighted neg-
atively in the feminine model.

The hybrid model for masculine was identical to the letter
model, with its true positive rate of 63% achieved at the expense
of a negative d0 (�0.97) for false positives. The high-confidence
hybrid model for feminine classified 11% of seen stimuli, with an
over-all hit rate of 70% (True positive rate = 0.34, d0 = 1.12; True
negative rate = 0.36, d0 = 0.35). It used three positively weighted
phonological features (CLOSE.MID, FRONT, and LATERAL.APPROXI-
MANT) and three negatively weighted predictors (VOICED, letter.g,
and phoneme.k).

The ten most and least masculine or feminine words by this
composite model are shown in Table 9.

Discussion. These models suggest that it is possible to predict
strings likely to be judged feminine (although only a small number
of strings, about 10%, can be classified with high confidence), but
more difficult to accurately predict strings likely to judged
masculine. As shown in Table 9, the most confident model
judgments in female classification (p(female) = 0.84) are higher
than the most confident model judgments in masculine classifica-
tion (p(male) = 0.69).

The models provide some support for the idea that markers of
masculinity/femininity are also markers of the categories large/small
and sharp/round (cf. Sidhu & Pexman, 2015). The letter k (the fifth
least common letter in English) that is negatively associated with
feminine also had strong positive weightings in the model for the
category sharp. The letter g (associated here with the categorymas-
culine) was also a strongly-weighted cue to membership in the cat-
egory large. The correlations between the predicted values of the
high-confidence models for each dimension support this similarity.
Across all 7996 strings, the correlation between predicted mascu-
line/feminine (i.e., masculine – feminine) and predicted large/small
is 0.25 (p < 2E�16). The correlation between predicted masculine/
feminine and predicted sharp/round is also reliable, but much lower
at r = 0.14 (p < 2E�16). Together in a regression equation,
estimated large/small and sharp/round account for about 12% of
the variance in the masculine/feminine estimates (r2 = 0.123,
F(2, 7993) = 562.9; p < 2E�16), with the beta weight on large/small
(b = 0.32) nearly twice that on sharp/round (b = 0.17).
It is not clear why femininity is more clearly symbolized than
masculinity. A speculative theory is that the concept female is more
multifaceted than the concept male. For instance, examining free
association norms for either word reveals 12 associations for
female, but only five for male (Nelson, McEvoy, & Schreiber,
1998). A more multifaceted concept might invite a more diverse
set of sound symbolic associations.

General discussion: Commonly-studied categories
Using a method that does not depend on having humans make

contrastive judgments, we find strong evidence of sound symbol-
ism for three commonly-studied sound symbolism dimensions,
with high-confidence hit rates equal to or greater than 70% for
the categories large, sharp, round, and feminine, and above 60%
for the categories small and masculine (p < 2E�16 in all cases, by
exact binomial probability). As well as varying in their strength,
these hit rates varied in where that strength came from (e.g., the
hit rate for small is achieved mainly by a very high true positive
rate of 61%, coupled with a true negative rate of just 3%, whereas
the high feminine hit rate is achieved by a balance of 34% true pos-
itives and 36% true negatives). There were also large differences in
the proportions of stimuli that could be classified with high confi-
dence (defined as an absolute difference in predicted membership
in either pole > 0.30). Only 15% words could be classified with high
accuracy as small, compared to 34% of words that could be classi-
fied with high confidence as round.

As we noted in the introduction, it is difficult to compare the
categories when they differ on so many dimensions, but it does
not seem unreasonable to say that the data suggest that the cate-
gories of sharp and round are the most solidly sound symbolic, by
almost any measure one might propose (e.g., confident hit rate;
relative ratio of true positive and true negative classification; aver-
age d0; percent of stimuli classified with confidence multiplied by
hit rate).

The hybrid models had access to features, phonemes/biphones,
and letters/bigrams (though no biphone appeared in any model). It
is difficult to separate these different predictor classes since they
are, as different representations of the same thing, often highly
or even perfectly correlated. However, there may be differences
in the extent to which the high confidence models used predictors
from one class or another. All models mixed predictors of all three
classes (see Fig. 4). The models for sharp/round were relatively
‘letter-heavy’, with the two hybrid models using 88% (15/17)



Fig. 4. Number of features, phonemes, letters, and bigrams used in modelling different dimensions. The left side shows the sum across the phoneme, letter, and bigram
models. The right side shows the sum in the hybrid models only. Values of 0 are set slightly above 0 to make the categories easier to track.
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unique letter/phoneme/bigram predictors, as compared to 60%
(6/10) for the hybrid models for masculine/feminine. In contrast,
the masculine/feminine hybrid models used 40% (4/10) unique fea-
tures while the sharp/round models used just 11.7% (2/17) unique
features. With such small numbers, it is difficult to know if these
frequency differences reflect differences in the nature of the sound
symbolism in the two categories. The fact that phonological fea-
tures, phonemes, and letters all contribute to all sound symbolism
effects complicates our understanding of the phenomena, suggest-
ing as it does that sound symbolism may have many sources.
Semantic categories

In their discussion of the structure of semantics, Hollis and
Westbury (2016) presented evidence identifying concreteness
and (in keeping with earlier work by Osgood, Suci, & Tannenbaum,
1957) valence as candidate organizing dimensions.9 There is some
evidence suggesting that formal sound symbolism cues are corre-
lated with each of these dimensions. A few studies have presented
evidence of a systematic relationship between string length and con-
creteness (Reilly, Hung, & Westbury, 2017; Reilly, Westbury, Kean, &
Peele, 2012). There is also some evidence of voiceless stops being
rated as less pleasant than sonorants (Roblee & Washburn, 1912).
While Greenberg and Jenkins (1966) found that front vowels were
rated as less pleasant than back vowels, Miron (1961) and Tarte
(1982) found the opposite pattern. Nielsen and Rendall (2011) dis-
cussed a potential evolved association between high frequency
sounds (i.e., plosives, fricatives, and high-front vowels) and danger/
distress, which may contribute to some of these associations.
9 Other dimensions were associated with concepts that are not easily suited for a
sound symbolism study: word frequency, agency, and meaning specificity.
As noted above, we tested the two dimensions of concrete/
abstract and good/bad (high/low valence) in a different way than
the dimensions discussed so far. Instead of asking for explicit judg-
ments on the dimensions we selected 12 nouns that were high or
low on each of these two dimensions (Brysbaert et al., 2014;
Warriner et al., 2013), allowing us to define anchors for each of
the two categories by aggregating the approximately 12,840
human judgments made for the six nouns that fell into that
anchor’s category.

Dimension 5: Concrete/Abstract
The full hybrid dimension of concrete/abstract was defined by

concatenating the judged categories wisdom, spirituality, virtue,
sadness, fraud, and injustice to construct the abstract category,
and by concatenating the judged categories flower, gem, toy, wasp,
bomb, and fungus to construct the concrete category.

The best models of concrete and abstract are shown in Table 10.
The models may be summed up in the briefest way by saying that
they are very poor models. The hybrid models for both poles
include true positive d0 values at or below zero (Concrete true pos-
itive d0 = 0; Abstract true positive d0 = �0.07). The high confidence
models classify fewer than ten stimuli, and all incorrectly.

Since all this evidence suggests that the models perform only
marginally better than chance, we have not included a table of
the few nonwords classified.

We defer discussion until consideration of the second semantic
category, which showed very similar results.

Dimension 6: High/Low valence
The full hybrid dimension of high/low valence was defined by

concatenating the judged categories wisdom, spirituality, virtue,
flower, gem and toy to construct the high valence category, and



Table 10
Model summary for categories concrete and abstract. Predictors are ordered by decreasing magnitude of beta weight. Predictors with a positive weight are shown in bold. CV: K-fold cross-validated hit rate (k = 10). Hits: Exact observed
hit rate. TP: True positive rate. TN: True negative rate. Difference models are limited to high confidence strings, defined as estimated to have a difference in probability of belonging to one category (concrete or abstract) – probability of
belonging the other pole > 0.30. Proportion: Proportion of seen strings in the difference model.

Model Concrete Estimate SE t Pr(>|t|) Performance Difference model Abstract Estimate SE t Pr(>|t|) Performance Difference model

Features (Intercept) 0.03 0.03 0.99 3.20E�01 CV: 0.52 PROPORTION: 0 (Intercept) �0.34 0.05 �6.5 8.36E�11 CV: 0.55 PROPORTION: 0
CLOSE.MID 0.17 0.03 5.17 2.41E�07 HITS: 0.52 HITS: 0 CLOSE.MID 0.24 0.03 7.13 1.08E�12 HITS: 0.55 HITS: 0
VOICED �0.1 0.02 �4.28 1.89E�05 TP: 0.34 TP: 0 LATERAL.APPROXIMANT �0.23 0.04 �6.45 1.14E�10 TP: 0.18 TP: 0

TP d0: 0.56 TP d0: N/A FRONT 0.21 0.03 8.11 5.51E�16 TP d0: �0.38 TP d0: N/A
TN: 0.18 TN: 0 OPEN 0.18 0.04 4.31 1.68E�05 TN: 0.37 TN: 0
TN d0: �0.42 TN d0: N/A PLOSIVE �0.12 0.02 �5.68 1.40E�08 TN d0: 0.69 TN d0: N/A

ALVEOLAR 0.1 0.02 4.77 1.88E�06

Phonemes (Intercept) �0.03 0.02 �1.35 0.18 CV: PROPORTION: 0 (Intercept) �0.03 0.03 �0.98 0.33 CV: PROPORTION: 0.0002
Biphone.nt �0.34 0.09 �3.92 8.88E�05 HITS: 0.53 HITS: 0.5 Biphone.kAX �0.72 0.12 �6.26 4.10E�10 HITS: 0.52 HITS: 0.5
Phoneme.AX 0.17 0.03 5.27 1.43E�07 TP: 0.23 TP: 0.5 Biphone.AXr �0.45 0.09 �5.16 2.49E�07 TP: 0.21 TP: 0.5

TP d0: �0.16 TP d0: N/A Biphone.IHk 0.4 0.09 4.33 1.50E�05 TP d0: �0.2 TP d0: N/A
TN: 0.3 TN: 0 Biphone.AXs 0.36 0.09 4.1 4.18E�05 TN: 0.31 TN: 0
TN d0: 0.33 TN d0: N/A Phoneme.g �0.31 0.05 �5.93 3.03E�09 TN d0: 0.31 TN d0: N/A

Phoneme.AX 0.28 0.04 7.27 3.81E�13
Phoneme.f �0.25 0.05 �5.21 1.93E�07
Phoneme.b �0.21 0.04 �4.7 2.68E�06
Phoneme.l �0.14 0.03 �4.23 2.38E�05

Letters (Intercept) �0.01 0.03 �0.49 0.63 CV: 0.52 PROPORTION: 0.0009 (Intercept) �0.12 0.03 �3.84 0.000122 CV: 0.56 PROPORTION: 0.0008
Bigram.um 0.58 0.11 5.4 6.98E�08 HITS: 0.53 HITS: 0.36 Bigram.fl �0.66 0.11 �5.81 6.34E�09 HITS: 0.56 HITS: 0.8
Bigram.us 0.43 0.09 4.93 8.30E�07 TP: 0.25 TP: 0.36 Letter.k �0.46 0.06 �7.82 5.72E�15 TP: 0.25 TP: 0
Letter.u �0.23 0.05 �4.96 7.20E�07 TP d0: 0 TP d0: N/A Letter.z �0.41 0.08 �4.87 1.15E�06 TP d0: 0.05 TP d0: N/A
Letter.a 0.12 0.03 4.23 2.39E�05 TN: 0.27 TN: 0 Letter.w �0.4 0.1 �3.93 8.60E�05 TN: 0.31 TN: 0.8

TN d0: 0.17 TN d0: N/A Bigram.us 0.36 0.08 4.73 2.26E�06 TN d0: 0.34 TN d0: N/A
Letter.b �0.24 0.04 �6.01 1.95E�09
Letter.g �0.24 0.04 �5.58 2.46E�08
Letter.i 0.24 0.03 7.65 2.08E�14
Letter.a 0.19 0.03 6.82 9.75E�12

Composite (Intercept) �0.01 0.03 �0.49 6.30E�01 CV: 0.52 PROPORTION: 0.0001 (Intercept) �0.1 0.03 �2.91 0 CV: PROPORTION: 0.0001
Bigram.um 0.58 0.11 5.4 6.98E�08 HITS: 0.53 HITS: 0 Biphone.AXs 0.53 0.08 6.28 3.61E�10 HITS: 0.57 HITS: 0
Bigram.us 0.43 0.09 4.93 8.30E�07 TP: 0.25 TP: 0 Letter.k �0.46 0.06 �7.83 5.36E�15 TP: 0.23 TP: 0
Letter.u �0.23 0.05 �4.96 7.20E�07 TP d0: 0 TP d0: N/A Letter.w �0.42 0.1 �4.1 4.21E�05 TP d0: �0.07 TP d0: N/A
Letter.a 0.12 0.03 4.23 2.39E�05 TN: 0.27 TN: 0 Letter.z �0.42 0.09 �4.96 7.08E�07 TN: 0.34 TN: 0

TN d0: 0.17 TN d0: N/A Phoneme.g �0.35 0.05 �6.65 3.06E�11 TN d0: 0.48 TN d0: N/A
Phoneme.f �0.29 0.05 �6.01 1.89E�09
Letter.b �0.26 0.04 �6.39 1.73E�10
Letter.i 0.25 0.03 7.88 3.51E�15
Letter.a 0.19 0.03 6.68 2.58E�11
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Table 11
Model summary for categories high valence and low valence. Predictors are ordered by decreasing magnitude of beta weight. Predictors with a positive weight are shown in bold. CV: K-fold cross-validated hit rate (k = 10). Hits: Exact
observed hit rate. TP: True positive rate. TN: True negative rate. Difference models are limited to high confidence strings, defined as estimated to have a difference in probability of belonging to one category (high valence or low valence)
– probability of belonging the other pole > 0.30. Proportion: Proportion of seen strings in the difference model.

Model High valence Estimate SE t Pr(>|t|) Performance Difference model Low valence Estimate SE t Pr(>|t|) Performance Difference model

Features (Intercept) �0.23 0.07 �3.32 9.08E�04 CV: 0.564 PROPORTION: 0 [No model] [No model] [No model]
FRONT 0.34 0.03 11.12 <2E�16 HITS: 0.57 HITS: 0
CLOSE.MID 0.33 0.04 9.16 <2E�16 TP: 0.26 TP: 0
LABIODENTAL �0.3 0.04 �6.85 8.01E�12 TP d0: 0.16 TP d0: N/A
BACK 0.21 0.04 5.41 6.29E�08 TN: 0.31 TN: 0
VELAR �0.16 0.03 �5.13 2.97E�07 TN d0: 0.27 TN d0: N/A
PLOSIVE �0.12 0.02 �5.06 4.18E�07
VOICED �0.09 0.02 �5.1 3.37E�07

Phonemes (Intercept) �0.21 0.04 �5.66 1.55E�08 CV: 0.56 PROPORTION: 0 (Intercept) �0.02 0.02 �1.06 0.29 CV: 0.529 PROPORTION: 0
Biphone.AXr �0.43 0.09 �4.95 7.55E�07 HITS: 0.56 HITS: 0 Biphone.AXn 0.21 0.05 3.87 0.00011 HITS: 0.53 HITS: 0
Phoneme.EY 0.39 0.08 4.68 2.89E�06 TP: 0.19 TP: 0 Phoneme.s 0.19 0.04 4.99 6.23E�07 TP: 0.26 TP: 0
Phoneme.g �0.37 0.05 �6.89 5.82E�12 TP d0: �0.31 TP d0: N/A Phoneme.m 0.18 0.04 4.16 3.19E�05 TP d0: 0.01 TP d0: N/A
Phoneme.AX 0.36 0.04 9.28 <2E�16 TN: 0.37 TN: 0 TN: 0.27 TN: 0
Phoneme.f �0.34 0.05 �6.88 6.48E�12 TN d0: 0.69 TN d0: N/A TN d0: 0.17 TN d0: N/A
biphone.AXl �0.27 0.06 �4.32 1.58E�05
Phoneme.IY 0.23 0.04 5.22 1.79E�07
Phoneme.b �0.23 0.04 �5.27 1.41E�07
Phoneme.AE 0.21 0.04 4.8 1.57E�06
Phoneme.IH 0.21 0.04 5.55 2.95E�08
Phoneme.k �0.19 0.04 �5.37 7.98E�08

Letters (Intercept) �0.17 0.03 �4.92 8.97E�07 CV: 0.564 PROPORTION: 0.0003 (Intercept) 0.04 0.02 1.8 0.07 CV: 0.529 PROPORTION: 0.0009
Letter.k �0.4 0.06 �6.74 1.70E�11 HITS: 0.56 HITS: 0.75 Bigram.si 0.44 0.11 3.86 0.000115 HITS: 0.53 HITS: 0.33
Letter.g �0.34 0.04 �7.67 1.82E�14 TP: 0.2 TP: 0 Bigram.ee �0.43 0.1 �4.25 2.15E�05 TP: 0.49 TP: 0.33
Letter.f �0.3 0.04 �6.73 1.81E�11 TP d0: �0.23 TP d0: N/A Bigram.ch �0.37 0.09 �4.09 4.36E�05 TP d0: 1.83 TP d0: N/A
Bigram.us 0.3 0.08 3.99 6.60E�05 TN: 0.36 TN: 0.75 Bigram.st 0.31 0.08 3.86 0.000115 TN: 0.04 TN: 0
Letter.a 0.25 0.03 9.04 <2E�16 TN d0: 0.61 TN d0: N/A Letter.c 0.15 0.04 4.16 3.21E�05 TN d0: �1.59 TN d0: N/A
Letter.i 0.24 0.03 7.61 2.87E�14
Letter.b �0.21 0.04 �5.33 1.01E�07
Letter.d �0.17 0.04 �3.84 0.000125

Composite (Intercept) �0.12 0.05 �2.48 0.01 CV: 0.57 PROPORTION: 0.0007 (Intercept) 0 0.02 0.07 0.95 CV: 0.523 PROPORTION: 0.0009
Biphone.AXr �0.43 0.09 �4.99 6.14E�07 HITS: 0.57 HITS: 0.67 Bigram.si 0.46 0.11 4 6.31E�05 HITS: 0.53 HITS: 0.5
Phoneme.f �0.39 0.05 �7.71 1.37E�14 TP: 0.19 TP: 0 Bigram.ee �0.42 0.1 �4.11 4.04E�05 TP: 0.49 TP: 0.5
Phoneme.AX 0.36 0.04 9.42 <2E�16 TP d0: �0.28 TP d0: N/A Bigram.ch �0.37 0.09 �4.02 5.86E�05 TP d0: 1.83 TP d0: N/A
Letter.k �0.32 0.06 �5.37 7.83E�08 TN: 0.38 TN: 0.67 Bigram.st 0.32 0.08 4.02 5.92E�05 TN: 0.04 TN: 0
Biphone.AXl �0.29 0.06 �4.55 5.55E�06 TN d0: 0.72 TN d0: N/A Phoneme.m 0.18 0.04 4 6.44E�05 TN d0: �1.59 TN d0: N/A
Letter.g �0.28 0.04 �6.3 3.13E�10 Letter.c 0.16 0.04 4.4 1.08E�05
FRONT 0.23 0.03 9.05 <2E�16
PLOSIVE �0.16 0.02 �7.07 1.64E�12
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Table 12
Hybrid model performance for individual categories making up the imageability and valence dimensions.

Category Hit rate p TP TP d0 TN TN d0

spirituality 0.62 <2E�16 0.23 0.28 0.40 1.18
flower 0.62 <2E�16 0.40 1.15 0.22 �0.03
toy 0.61 <2E�16 0.00 N/A 0.61 N/A
wisdom 0.59 <2E�16 0.25 0.11 0.34 0.88
virtue 0.58 7.09E�13 0.23 0.07 0.35 0.64
sadness 0.55 8.70E�07 0.46 2.73 0.09 �1.85
gem 0.55 5.63E�06 0.23 �0.16 0.32 0.62
fraud 0.55 8.36E�06 0.15 �1.15 0.40 1.89
wasp 0.54 1.80E�05 0.47 3.03 0.07 �2.10
bomb 0.51 0.14 0.00 N/A 0.51 5.56
fungus No model No model N/A N/A N/A N/A
injustice No model No model N/A N/A N/A N/A

Table 13
Hybrid model for flower.

Estimate SE t p

(Intercept) �0.03 0.1 �0.29 0.77
Phoneme.AX 0.57 0.09 6.62 4.55E�11
VELAR �0.42 0.07 �5.91 4.08E�09
FRONT 0.37 0.06 5.99 2.40E�09
Phoneme.t �0.35 0.09 �3.95 8.22E�05

Table 14
Ten strings predicted to be highest and lowest in probability of belonging to the
category of flower, from the 7996 strings used in the experiment.

Category String p(FLOWER)

High asanism 0.87
High eponism 0.87
High heonia 0.87
High amisism 0.84
High etonism 0.82
High adelous 0.82
High aerble 0.82
High aerson 0.82
High airamus 0.82
High aromal 0.82
Low conctic 0.22
Low corquass 0.22
Low counk 0.22
Low glonk 0.22
Low glonx 0.22
Low goonx 0.22
Low quask 0.22
Low woonc 0.22
Low woonk 0.22
Low cruckwic 0.21

Table 15
All 31 hybrid model predictors, sorted in descending order of the average absolute b
weights assigned to them.

PREDICTOR AVERAGE |b| MODEL[S]

Letter.x 1.81 SHARP
Bigram.fl 1.25 MALE
Bigram.oo 1.06 LARGE
Bigram.am 1.04 ROUND
Bigram.ic 0.9 MALE
Phoneme.g 0.88 LARGE
Phoneme.OW 0.77 SHARP
Phoneme.UW 0.77 SHARP
Letter.k 0.76 SHARP
Letter.y 0.69 MALE
Letter.h 0.66 SMALL
Phoneme.k 0.59 FEMALE
Letter.o 0.58 ROUND
Letter.c 0.58 SHARP
Phoneme.b 0.57 LARGE
Phoneme.AX 0.57 FLOWER
Letter.m 0.52 SHARP
Letter.g 0.5 FEMALE
CLOSE.MID 0.48 FEMALE
LABIODENTAL 0.48 ROUND
Letter.u 0.47 ROUND
Phoneme.AA 0.45 SHARP
Letter.t 0.445 ROUND/SHARP
FRONT 0.42 FEMALE/FLOWER
VELAR 0.42 FLOWER
k 0.41 ROUND
Letter.i 0.39 MALE
Phoneme.t 0.35 FLOWER
LATERAL.APPROXIMANT 0.345 FEMALE/ROUND
BACK 0.33 LARGE
VOICED 0.28 FEMALE/SMALL
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by concatenating the judged categories wasp, bomb, fungus,
sadness, fraud, and injustice to construct the low valence category.

The full models are shown in Table 11. The hybrid model for
high valence achieved a negative true positive d0 of �0.28. The
low valence model is strongly biased to accepting strings, with true
positive rate of 0.49 (d0 = 1.83) at the expense of the true negative
rate of 0.04 (d0 = �1.59). It classifies only eight stimuli with high
confidence with a 50% hit rate. As with the model above, we have
not included a table of classified nonwords since the model is so
poor.

Discussion. These two attempts to document sound symbolism
indirectly were failures (but see Louwerse and Qu (2017), for a
successful, more direct approach to sound symbolism in valence).
To understand our results, we developed models on each of the
component categories (which are, recall, the categories on which
the participants actually judged membership). Table 12 shows
hybrid model hit rates for models of string acceptance that were
developed on each of the 12 component categories. Nine of the
twelve models (all but bomb, fungus, and injustice) showed statisti-
cally reliable hit-rates, ranging from a 62% for spirituality to 54% for
wasp. However, of these, all but one are trivially high, either
because they are strongly biased to acceptance (wasp and sadness,
with high true positive d0 scores but strongly negative true nega-
tive d0 scores) or to rejection (toy and fraud, with high true negative
rates but very poor true positive rates), or because the true positive
d0 values are very low or negative (gem, spirituality, virtue, wisdom).

The sole exception is the category flower, with a total hit rate of
0.62, which has a good true positive hit rate (0.40) and good true
positive d0 (1.15), though a near-zero d0 for true negatives
(�0.03; True negative hit rate: 0.22). The model for flower is shown
in Table 13, with the most and least likely strings picked out by the
model shown in Table 14. The list includes several
morphologically-implausible words that would probably be
rejected as flower names by human judges because of the suffix



Fig. 5. Correlation between logged letter and phoneme frequencies and the average absolute beta weights assigned to those predictors in any hybrid model in which they
appeared. The outlier is letter.x.

10 This measure is slightly misleading in some cases, since a few models contain
oppositely-signed weights on phonemes and their orthographic representation,
which raises their functional weight in that particular model. However, it is a
reasonable rough estimate of the discriminative value of each cue.
11 Plus the feature LATERAL.APPROXIMANT, since it encodes only one English
phoneme, /l/.
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ism, which is generally used in English to form nouns referring to
actions or completed acts (bilingualism, ventriloquism, witticism)
or to conduct (Buddhism, egoism, sadism). The model has two
positively-weighted predictors that both favor small vowels: pho-
neme.AX [/ə/] (b = 0.57) and FRONT (b = 0.37). It also has two neg-
atively weighted predictors: VELAR (b = �0.42) and phoneme.t (b
= �0.35). These predictors may be explained by noting that many
of the (negatively-weighted) VELAR consonants g and k have asso-
ciations with large, (negatively-weighted) phoneme.t has a strong
association with sharp, and FRONT is associated with small. For
converging evidence about the validity of the model for flower,
we can examine how model predictions in this category related
to predictions for categories considered above that are semanti-
cally related to flowers. Concretely, we can expect that strings sug-
gested by the model as suitable for flower should be more closely
related to the categories small, feminine, and round than to the cat-
egories anchoring the opposite poles of large, masculine, sharp
(although of course a small subset of flowers are strongly associ-
ated with sharpness due to having thorns). Across all 7996 strings,
the correlation between predicted masculine/feminine and pre-
dicted flower was r = �0.70 (p < 2E�16); between flower and
sharp/round was �0.25 (p < 2E�16); and between flower and
large/small was �0.04 (p < 0.0005). All of these relationships are
in the direction one would expect given the semantic relationships
of the categories with the word flower. A regression model predict-
ing the values estimates for flower from the three others was highly
reliable (F(3, 7992) = 2911, p < 2E�16), and achieved an r2 value of
0.52, with all three predictors entering in reliably: masculine/femi-
nine b = �0.44, sharp/round b = �0.05, and large/small b = �0.05.
See also Fig. 3, which illustrates the very strong positive correlation
of r = 0.77 (p < 2E�16) between predicted femininity and predicted
flower. This suggests again that some sound symbolic effects are
mediated by other phoneme-meaning associations (see French,
1977).
General discussion: Semantic categories
In the introduction to this paper, we posed several unanswered

questions about sound symbolism that we hoped to be able to
address.

The first question was: Is there any systematicity to which linguis-
tics features can act as sound symbols? We made several explicit
predictions about the nature of the cues that could be sound sym-
bolic. One was that sound symbolism cues should be useful as dis-
criminative signs in inverse proportion to their frequency. We
were able to test this prediction because we have the b weights
of every feature, phoneme, and letter that entered into a model.
Table 15 shows a list of all 31 predictors that appeared (only a
few more than once) in any of the successful hybrid models, sorted
in order of decreasing average absolute beta weight.10 It is imme-
diately obvious from inspection that less common features were
assigned higher weights, as predicted. The five most highly weighted
predictors are the low frequency letter letter.x (third least common
letter) and the only four bigrams (necessarily low frequency com-
pared to letters) that appeared in any model. The five least weighted
features include (as predicted) ubiquitous phonological features
(most notably, BACK and VOICED) and letter.t (the second most com-
mon letter, after e).

The logged frequencies of the letters (computed from approxi-
mately 4.5 billion characters of English text by Lyons, n.d.) and
phonemes11 (from Blumeyer, 2012) are graphed against their aver-
age absolute model weights in Fig. 5. The values have a very strong
negative correlation (r = �0.83, p = .000006), i.e., less frequent char-



12 We ignored letter.y due to its ambiguous role.
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acters are not only more strongly weighted as predictors; they are so
weighted in direct inverse proportion to their logged frequency. As
we suggested in the introduction, this is predictable from an infor-
mation theoretic point of view, since infrequent characters are, in
virtue of their infrequency, better discriminative cues.

The notion that low frequency cues carry more sound sym-
bolic weight also has some precedence in the research on ideo-
phones (for a review see Dingemanse, 2012). These are iconic
words present in many languages (though uncommon in Indo-
European languages) that depict various sensory events. This is
often accomplished via sound symbolic links between the form
of the ideophone and the sensory event being depicted. For
instance, the Japanese word pika means a flash of light–note that
it contains the vowel /i/ which is associated with brightness
(Newman, 1933). Dingemanse (2012) notes that ideophones are
often marked by an unusual form. While they do not contain
unusual phonemes, these phonemes are often arranged in unu-
sual ways, leading to skewed phonotactic distributions and
greater variability in syllable structure. Lockwood and
Tuomainen (2015) theorize that their markedness triggers a ‘‘sen-
sory integration process of sound and the sensory information
which the ideophone activates by association” (p. 7). We might
theorize that this is also involved in the greater sound symbolic
effect among low frequency items observed here. When a given
component (i.e., feature, phoneme, grapheme) is marked due to
its low frequency, it may be processed in such a way that allows
for its sound symbolic associations to affect the interpretation of
its nonword. Lockwood and Tuomainen (2015) observed a larger
P2 for ideophones, which they interpreted as reflecting this pro-
cess. Future research might examine if there is any evidence of
a similar effect for the components identified here.

We also predicted that, pari passu, letters with ambiguous pro-
nunciation should be weighted lower than similar letters with
unambiguous pronunciation. We can test this in addressing the
question we raised earlier: Why does phoneme.b act more strongly
as a sound symbolic cue than other voiced plosives? Phoneme.b
and letter.g each appeared, with mid-range weights, in a single
hybrid model, but the third voiced plosive d was not seen in any
model and is not commonly associated with sound symbolism.
The non-symbolic phoneme.d is far more common (accounting
for 4.21% of all phonemes) than either phoneme.g (0.8%) or pho-
neme.b (1.8%). In virtue of being more commonly experienced
(i.e., of appearing in a wide range of words, and therefore being less
likely to be a cue to any particular meaning) it is predictable that it
should have lower value as a discriminative cue than other voiced
plosives, as it does.

We would also predict that the symbolic value of letter.g should
be further diluted by its greater phonological ambiguity, compared
to letter.b. Although both letter.b and letter.g have more than one
pronunciation (e.g., bog vs. lamb; game vs. age), a silent letter.b pro-
nunciation is far less common than letter.g as /dʒ/. In an English
dictionary of 111,626 words (Shaoul & Westbury, 2006), there
are 514 lemmas that end with ‘ge’, suggesting that with their mor-
phological families there are hundreds of words in which ‘g’ is pro-
nounced /dʒ/. In contrast, there are just 37 lemmas that end with a
silent ‘mb’, so (taking into account their morphological families) at
most a few dozen words with a silent letter.b. There are over a
thousand words containing ‘mb’ in which the letter.b is not silent:
i.e., number, November, amber, ambition, remember. These distribu-
tions suggest that letter.b, with its more consistent mapping to
phonology, might be expected to be a more reliable discriminator
of sound symbolic meaning than letter.g. However, the evidence
that this is true is not strong. In the models in which they appear,
phoneme.b has a slightly higher absolute weight (0.57) than letter.
g (0.5), a difference of 0.24z in terms of the normalized absolute
weights of letters and phonemes.
We also suggested that vowels-as-letters should be weak cues
due to the facts that they are common and have multiple pronun-
ciations. The four vowels-as-letters that appear in any of the mod-
els (letter.a, letter.i, letter.o, and letter.u) have an average absolute
beta weight of 0.47, as compared to an average absolute beta
weight of 0.69 for the nine consonants-as-letters.12 The consonant
average includes the predictably low weight for letter.t, which is
more common in English than every vowel except letter.e, and as
a result has a low absolute beta weight of 0.4. If we ignore it as an
outlying consonant, the average absolute beta weight for consonants
is 0.72. This vowel-consonant weight difference is a large difference
of 0.87z in terms of the normalized absolute weights on all letters
and phonemes.

Although this strong relationship between the frequency of a
predictor and its strength as a sound symbolic cue does not say
anything about the semantics of sound symbolism (i.e., about what
leads to particular cues being associated with particular semantic
dimensions), it does place strong constraints on those semantics.
There are only a small number of low probability cues that can
act as strong sound symbols. Since they cannot be sound symbolic
for contradictory categories (which would make them useless as
discriminatory cues), they must be distributed in a way that
restricts contradictory symbolism. The consequence of having a
small number of strong cues that must be distributed quasi-
independently across categories is that there cannot be a large
number of sound symbolism categories with strong cues. Sound
symbolism with weak (i.e., frequent) cues can exist, of course,
but it too must be very limited, for two reasons: because the num-
ber of weak cues that can be combined is capped by word length
restrictions and because combining numerous weak cues would
rapidly become non-discriminatory. If there are many weakly-
weighted cues defining a category, one of two things must be true.
One is that the category will rely on only a few of these weakly-
weighted cues and thus by definition be defined only with low cer-
tainty. The other is that the category will rely on combining a large
number of cues, and (since the cues are by assumption common)
too many strings will be able to meet the criteria so the category
will be very large and diverse. In either case, the category will
not be a clearly discernible category.

There are a couple of corollaries to these restrictions. The first is
that, since a small number of low-frequency cues are available to
symbolize a number of potentially contradictory semantic cate-
gories, the more low-frequency cues a string contains, the higher
the probability that its symbolic interpretation will be indetermi-
nate, since there is a higher probability of the string’s cues sending
contradictory signals. In order to test this, we split the alphabet in
half by letter frequency and used binomial regression to predict the
responses to all 42,778 decisions, without regard to semantic cat-
egory, using a count of the high and low frequency letters as pre-
dictors. Only the count of low frequency letters entered the
model, with a negative b = �0.13 (p < 2E�16). As predicted, a
greater number of low frequency (only) letters in a string is asso-
ciated with a lower acceptance rate for that string.

A second interesting corollary of these restrictions is that they
explicitly suggest where there may yet be untapped potential to
discover sound symbolism: among the few rare cues that are yet
‘spoken for’. Although some of the rare letters and phonemes that
are not strongly associated with any known sound symbolism cat-
egory may not be associated precisely because they are too rare to
be useful cues, some may be able to play the role. The remaining
rare cues are letters z and j and their associated phonemes /ʒ/
and /dʒ/, as well as unvoiced th /h/, ch (/tʃ/), and perhaps /aʊ/
(ow as in cow) and /ʊ/ (oo as in foot), though both these vowel pho-
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nemes have characteristics that would allow them to be sound
symbolic in known categories, notably large and small,
respectively.

The second question we posed at the beginning of this paper
was: Are sound symbolic effects limited to the commonly-studied
dimensions, or are they more general?We found only weak evidence
for generalization outside of the best known dimensions. Neither
of the hybrid categories, concreteness or valence, were successfully
modeled. Of their twelve component categories, only flower was
successfully modeled. This seems to have been largely because
the category is strongly associated with several other well-
symbolized categories, with the estimates most notably correlated
at r = �0.70 with the estimates for masculine/feminine (and corre-
lating at r = 0.77 for estimates of feminine alone), as well as corre-
lating reliably and negatively with large/small and sharp/round
(p < 2E�16 in all cases). These twelve component categories may
be too specific to result in sound symbolic associations.
Monaghan, Mattock, and Walker (2012) have provided some evi-
dence that sound symbolism operates at broad categorical levels
(e.g., an association with roundness in general, as opposed to speci-
fic round entities). Thus, while sound symbolism was not found to
generalize to specific target dimensions here, there are a number of
other broad categorical associations (e.g., fast/slow, bright/dull) that
have been demonstrated in the literature. It remains to be seen if
such associations can be observed using this large-scale approach.

It is possible, however, that a small number of basic associations
(potentially just those involving the most strongly-symbolized
dimensions we have considered here) underlie the majority of
sound symbolic associations (e.g., French, 1977). For instance, the
association between certain vowels and largeness might facilitate
an association between those vowels and other dimensions related
to largeness (e.g., thickness or slowness). We found some evidence
of this here. Fig. 3 speaks to the semantic question (why do the
sound symbols that exist play their role?) by suggesting more specif-
ically that the category largemay lend its sound symbolic power to
several categories. As we have noted above, estimates for large are
negatively correlated with estimates for small, sharp, flower, and
feminine, and reliably positively correlated with round. The cate-
gory large is also the most predictable of the categories we used
in our experiments (Fig. 1), although entirely on the basis of true
negatives (that dovetail with strong true positive performance in
the category small). As we have also noted above, we are tempted
to argue that this large/small dimension is the only dimension
definable using phonological features alone. It has long been noted
by others, going back to Jespersen (1925), that the back vowels and
voicing that are associated with large are both sounds with a nat-
ural counterpart in non-linguistic domains, since big animals
(and, more generally, big things when struck or used as horns)
make louder, lower sounds (see also Fitch, 1997; Ohala, 1983;
Ohala, 1984). Its definability with phonological features may
reflect that large/small is a true ‘natural’ category whose existence
helps delimit the several other categories with which it is
correlated.

The third question we posed was: Are the predictors of one pole
of the dimensions the same (with reversed sign) as the predictors of
the other pole, or are the poles separable? Our results suggest that
the answer is that the poles are largely separable. Perhaps the best
example is the two poles of the masculine/feminine dimension,
which show a large difference in predictability (masculine high
confidence hit rate of 63% versus a feminine high confidence hit
rate of 70%). Moreover, in several cases our models suggested that
one pole of a dimension was predicted largely in terms of being the
negative of the other, implying that it is mainly one pole of the
dimension that is responsible for the sound symbolism. As dis-
cussed in the last paragraph, a clear example is the dimension of
large/small, which may be best described as a dimension of large
or not-large, since all predictors in all the models for small were
negatively weighted (although, nevertheless, these models do well
at predicting true positives in the category small, due to a bias [i.e.,
positive intercept] towards accepting strings as small in the
absence of any counter-evidence).

It is interesting to consider to what extent similar one-sided
anchors might define some semantic dimensions, and whether this
is because some poles are more salient because of perceptual, bio-
logical, linguistic, or other factors. The idea of opposing anchors of
a dimension being differently represented is related to markedness.
This complex construct may be composed of many quasi-
independent cues (Lehrer, 1985), but is essentially the extent to
which the extent to which one of a pair of antonyms is used as a
default (unmarked) or not used as a default (marked). However,
the direct relevance is unclear due to inconsistencies. By the wide
variety of cues reviewed by Lehrer, largeness is unmarked (and was
positively symbolized in our study), and smallness is marked (and
was poorly symbolized in our study, mostly by its absence). On the
other hand, by the same criteria maleness is unmarked and femi-
ninity is marked, but femininity was better symbolized in our data
than masculinity. It may be possible to relate these differences to
differences in the cues that contribute to markedness.

Notably, the distinction between the meanings of two opposing
anchors of a dimension is obscured in studies that present partic-
ipants with both ends of a given dimension (e.g., studies in which
participants are given two nonwords to match with a round and a
sharp visual shape; see French, 1977). A similar result was reported
by D’Onofrio (2014), who found that while some features (e.g., the
presence of voicing) were associated with round shapes, their
opposites (e.g., the absence of voicing) weren’t necessarily associ-
ated with sharp shapes.

This question of whether the poles of a sound symbolized
dimension are separable can perhaps be more succinctly addressed
by simply noting again the correlations between predictions for
opposite poles. While estimates for all opposing poles are reliably
negatively correlated, as one would expect, the magnitude of the
correlations are not as high as one might expect for ‘true opposites’
(sharp:round: r = �0.66; large:small r = �0.34; masculine:femi-
nine: r = �0.34).

Our fourth question was: Are all form predictors in a predictable
semantic dimension equal in their predictive force? As we have dis-
cussed above, our models suggest clearly that the answer is no.
We see a wide range of weights and signs in the beta weights in
the models, and those weights are strongly correlated with the
logged frequencies of their associated predictors (Fig. 5).

Our fifth and sixth questions concerned the nature of those
form cues. The fifth question was: Are the effects entirely phonolog-
ical or might they also (or rather) be orthographic? We have sug-
gested that in general the phonological ambiguity of much
orthography suggests that phonology is likely to be a better dis-
criminant cue. However, we found both orthographic and phono-
logical cues in our models, in almost equal numbers. Altogether
there were 31 predictors used in the hybrid models, 14 of which
were graphemes and 13 of which were phonemes. Because we
arbitrarily deleted the orthographic cues when orthographic and
phonological cues were highly correlated, this may slightly over-
estimate the weight placed on phonological cues. It would be inter-
esting (though perhaps very difficult or impossible) to identify
dimensions better predicted by one or the other and see if the
sound symbolism cues dissociated as the discriminatory power
of the cues suggests they would (see Cuskley, Simner, & Kirby,
2015; Kirby, 2015; Sidhu et al., 2016 for attempts at distinguishing
the roles of orthography and phonology in shape sound
symbolism).

The final question we posed was: Do biphones or bigrams con-
tribute to the effects, and if so, how strongly? Our 31 cues included
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no biphones and just four bigrams. All the bigrams that did appear
in a final model were very strongly weighted, as would be pre-
dicted from the fact that they are necessarily rare and therefore
highly discriminative cues (Average absolute beta weight: 1.06;
no weight was lower than 0.9). In keeping with the discussion
above of where else we might see undiscovered sound symbolism,
we suspect that bigrams may also be a fruitful avenue to explore,
although many bigrams may be too rare to serve as useful discrim-
inant cues, since cues that are hardly ever encountered are not use-
ful cues.

Conclusion

The approach we have taken in this study suggests that we can
cleave the sound symbolism problem into two parts.

One part is the semantics of the situation: i.e., why certain
specific cues symbolize specific categories. While several theories
have been proposed, there is still much work to be done adjudicat-
ing between them. In addition, the majority of work on sound sym-
bolism has focused on specific subsets of language. We suggest
that the field could benefit from the large-scale approach taken
here, to test and refine existing theories, as well as potentially gen-
erate new ones.

Our work here suggests that semantics is only part of the story.
We have focused on evidence suggesting that not all cues can be
used to symbolize a category. Cues that are too common are use-
less in signal detection problems, because in virtue of being very
common they must necessarily be non-discriminative. We showed
that sound symbolism cues are, as this observation predicts,
weighted on average in inverse proportion to their logged fre-
quency, i.e., most of the weight is carried by a few rare cues. The
requirements of discriminability place constraints on the seman-
tics of sound symbolization in two ways: only a few cues are avail-
able to do most of the heavy lifting in sound symbolization, and
those can’t contradict each other (we can’t have the same cue for
small and large things, because then they would be non-
discriminative). Even though the constraints made by the need
for discriminability are not directly semantic, they delimit the
semantics of sound symbolism substantially.
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